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Abstract. Let (M, g) be a two dimensional compact Riemannian
manifold of genus g(M) > 1. Let f be a smooth function on M such
that

f ≥ 0, f 6≡ 0, min
M

f = 0.

Let p1, . . . , pn be any set of points at which f(pi) = 0 and D2f(pi) is
non-singular. We prove that for all sufficiently small λ > 0 there exists
a family of “bubbling” conformal metrics gλ = euλg such that their
Gauss curvature is given by the sign-changing function Kgλ = −f + λ2.
Moreover, the family uλ satisfies

uλ(pj) = −4 log λ− 2 log

(
1√
2

log
1

λ

)
+O(1)

and

λ2euλ ⇀ 8π

n∑
i=1

δpi , as λ→ 0,

where δp designates Dirac mass at the point p.

1. Introduction

Let (M, g) be a two-dimensional compact Riemannian manifold. We
consider in this paper the classical prescribed Gaussian curvature problem:
Given a real-valued, sufficiently smooth funtion κ(x) defined on M , we want
to know if κ can be realized as the Gaussian curvature Kg1 of M for a metric
g1, which is in addition conformal to g, namely g1 = eug for some scalar
function u on M .

It is well known, by the uniformization theorem, that without loss of
generality we may assume that M has constant Gaussian curvature for g,
Kg =: −α. Besides, the relation Kg1 = κ is equivalent to the following
nonlinear partial differential equation

∆gu+ κ eu + α = 0, in M, (1.1)

where ∆g = divg∇ is the Laplace Beltrami operator on M . There is a
considerable literature on necessary and sufficient conditions on the function
κ for the solvability of the PDE (1.1). We refer the reader in particular to
the classical references [3, 7, 12, 13, 14, 17] and to [5] for a recent review of
the state of the art for this problem.
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Integrating equation (1.1), assuming that M has surface area equal to
one, and using the Gauss-Bonet formula we obtain∫

M
κeudµg =

∫
M
Kgdµg = −α = 2πχ(M), (1.2)

where χ(M) is the Euler characteristic of the manifold M .

In what follows we shall assume that the surface M has genus g(M)
greater than one, so that χ(M) = 2(1− g(M)) < 0 and hence

−Kg = α > 0.

Then (1.2) tells us that a necessary condition for existence is that κ(x) be
negative somewhere on M . More than this, we must have that∫

M
κdµg < 0.

Indeed testing equation (1.1) against e−u we get∫
M
κdµg = −

∫
M

(|∇gu|2 + α)e−udµg < 0. (1.3)

Solutions u to equation (1.2) correspond to critical points in the Sobolev
space H1(M, g) of the energy functional

Eκ(u) =
1

2

∫
M
|∇gu|2dµg − α

∫
M
udµg −

∫
M
κeudµg.

As observed in [3], since α > 0, we have that if κ ≤ 0 and κ 6≡ 0, then this
functional is strictly convex and coercive in H1(M, g). It thus have a unique
critical point which is a global minimizer of Eκ.

A natural question to ask is what happens when κ changes sign. A drastic
change in fact occurs. If supM κ > 0, then the functional Eκ is no longer
bounded below, hence a global minimizer cannot exist. On the other hand,
intuition would tell us that if κ is “not too positive” on a set “not too big”,
then the global minimizer should persist in the form of a local minimizer.
This is in fact true, and quantitative forms of this statement can be found
in [1, 4].

We shall focus in what follows in a special class of functions κ(x) which
change sign being nearly everywhere negative. Let f be a function of class
C3(M) such that

f ≥ 0, f 6≡ 0, min
M

f = 0.

For λ > 0 we let

κλ(x) = −f(x) + λ2,

so that our problem now reads

∆gu− feu + λ2eu + α = 0, in M. (1.4)
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Figure 1. Bifurcation diagram for solutions of problem (1.4)

In [10], Ding and Liu proved that the global minimizer of Eκ0 persists as a
local minimizer uλ of Eκλ for any 0 < λ < λ0. From (1.3) we see that

λ0 <

(∫
M
f

)1/2

.

Moreover, they established the existence of a second, non-minimizing
solution uλ in this range. Uniqueness of the solution u0 for λ = 0, and
its minimizing character, tell us that we must have uλ → u0 as λ→ 0 while
uλ must become unbounded. The situation is depicted as a bifurcation
diagram in Figure 1.

The proof in [10] does not provide information on its asymptotic blowing-
up behavior or about the number of such “large” solutions. Borer,
Galimberti and Struwe [5] have recently provided a new construction of the
mountain pass solution for small λ, which allowed them to identify further
properties of it under the following generic assumption: points of global
minima of f are non-degenerate. This means that if f(p) = 0 then D2f(p)
is positive definite. In [5] it is established that blowing-up of the family of
large solutions uλ occurs only near zeros of f , and the associated metric
exhibits “bubbling behavior”, namely Euclidean spheres emerge around
some of the zero-points of f . In fact, the mountain-pass characterization let
them estimate the number of bubbling points as no larger than four. More
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precisely, they find that along any sequence λ = λk → 0, there exist points
pk1, . . . , p

k
n, 1 ≤ n ≤ 4, converging to p1, . . . , pn points of global minima of f

such that one of the following holds

(i) There exist ε1
λ, . . . , ε

k
λ, such that εiλ/λ→ 0, i = 1, . . . , k, and in local

conformal coordinates around pi there holds

uλ(εiλx)− uλ(0) + log 8→ w(x) := log
8

(1 + |x|2)2
, (1.5)

smoothly locally in R2. We note that

∆w + ew = 0, in R2.

(ii) In local conformal coordinates around pi, with a constant ci there
holds

uλ(λx) + 4 log(λ) + ci → w∞(x),

smoothly locally in R2, where w∞ satisfies

∆w∞ + [1− (Ax, x)]ew∞ = 0, in R2.

where A = 1
2D

2f(pi).

In this paper we will substantially clarify the structure of the set of large
solutions of problem (1.4) with a method that yields both multiplicity and
accurate estimates of their blowing-up behavior. Roughly speaking we
establish that for any given collection of non-degenerate global minima of
f , p1, . . . , pk, there exist a solution uλ blowing-up in the form (1.5) exactly
at those points. Moreover

εiλ ∼
λ

| log λ| , uλ(pi) = −4 log λ− 2 log

(
1√
2

log
1

λ

)
+O(1).

In particular if f has exactly m non-degenerate global minimum points, then
2m distinct large solutions exist for all sufficiently small λ.

In order to state our main result, we consider the singular problem

∆gG− feG + 8π

n∑
i=1

δpi + α = 0, in M, (1.6)

where δpi designates the Dirac mass at the point pi. We have the following
result.

Lemma 1.1. Problem (1.6) has a unique solution G which is smooth away
from the singularities and in local conformal coordinates around pi it has the
form

G(x) = −4 log |x| − 2 log

(
1√
2

log
1

|x|

)
+H(x), (1.7)

where H(x) ∈ C(M).

Our main result is the following.
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Theorem 1.1. Let p1, . . . , pn be points such that f(pi) = 0 and D2f(pi) is
positive definite for each i. Then, there exists a family of solutions uλ to
(1.4) with

λ2euλ ⇀ 8π
n∑
i=1

δpi , as λ→ 0,

and uλ → G uniformly in compacts subsets of M \ {p1, . . . , pk}. We define

ci =
1

2
eH(pi)/2, δiλ =

ci
| log λ| , εiλ = λδiλ

where H is defined near pi by relation (2.2). In local conformal coordinates
around pi, there holds

uλ(εiλx) + 4 log λ+ 2 log δiλ → log
8

(1 + |x|2)2
,

uniformly on compact sets of R2 as λ→ 0.

Our proof consists of the construction of a suitable first approximation
of a solution as required, and then solving by linearization and a suitable
Lyapunov-type reduction There is a large literature in Liouville type
equation in two-dimensional domains or compact manifold, in particular
concerning construction and classification of blowing-up families of solutions.
See for instance [6, 9, 11, 15, 16, 18] and their references.

We shall present the detailed proof of our main result in the case of one
bubbling point n = 1. In the last section we explain the necessary (minor,
essentially notational) changes for general n. Thus, we consider the problem

∆gu− feu + λ2eu + α = 0, in M, (1.8)

under the following hypothesis: there exists a point p ∈ M such that
f(p) = 0 and D2f(p) is positive definite.

2. A nonlinear Green’s function

We consider the singular problem

∆gG− feG + 8πδp + α = 0, in M, (2.1)

where δp is the Dirac mass supported at p, which is assumed to be a point
of global non-degenerate minimum of f . In this section we will establish the
following result, which corresponds to the case n = 1 in Lemma 1.1.

Lemma 2.1. Problem (2.1) has a unique solution G which is smooth away
from the singularities and in local conformal coordinates around p it has the
form

G(x) = −4 log |x| − 2 log

(
1√
2

log
1

|x|

)
+H(x), (2.2)

where H(x) ∈ C(M).
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Proof. In order to construct a solution to this problem, is important to
consider the equation, in local conformal coordinates around p, for γ � 1

∆G − feG + 8πδ0 = 0, in B(0, γ). (2.3)

Since

−∆ log
1

|x|4 = 8πδ0,

if we write G = −4 log |x|+ h(x), then h satisfies

∆h− f(x)
1

|x|4 e
h = 0, in B(0, γ). (2.4)

Since p is a non-degenerate point of minimum of f , we may assume that,
in local conformal coordinates around p, there exist positive numbers β1, β2

such that
β1|x|2 ≤ f(x) ≤ β2|x|2, (2.5)

for all x ∈ B(0, γ), if γ is small enough. Letting r = |x|, it is thus important
to consider the equation

∆V − 1

r2
eV = 0, in B(0, γ). (2.6)

For a radial function V = V (r), this equation becomes

V ′′(r) +
1

r
V ′(r)− 1

r2
eV (r) = 0, 0 < r < γ. (2.7)

We make the change of variables r = et, v(t) = V (r), so that equation (2.7)
transforms into

d2

dt2
v(t) = ev(t), −∞ < t < log γ.

from where it follows that

d

dt

(
v′(t)2

2
− ev(t)

)
= 0,

or v′(t)2 = 2(ev + C), for some constant C. Choosing C = 0, we have

d

dt

(
e−v(t)/2

)
= − 1√

2
.

Integrating and coming back to the original variable, we deduce that

V (r) = −2 log

(
1√
2

log
1

r

)
is a radial solution of equation (2.6). Note that, from condition (2.5) we
readily find that h1(x) = V (|x|) − log β1 is a supersolution of (2.4), while
h2(x) = V (|x|)− log β2 is a subsolution of (2.4).

Now we deal with existence of a solution of problem (2.1). The previous
analysis suggests that the singular part of the Green’s function, in local
conformal coordinates around p, is

Γ(x) := −4 log |x|+ V (|x|),
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so we look for a solution of (2.1) of the form u = ηΓ + H, where η is a
smooth cut-off function such that η ≡ 1 in B(p, γ2 ) and η ≡ 0 in R2 \B(p, γ).
Therefore, H satisfies the equation

∆gH − feηΓeH + α = −ηfeΓ − 2∇gη∇gΓ− Γ∆gη =: Θ, in M. (2.8)

Observe that feηΓ ∈ L1(B(p, γ)). Next we find ordered global sub and
supersolutions for (2.8). Let us consider the problem

−∆gh0 + fh0 = 1, in M,

which has a unique non-negative solution of class C2,σ(M), 0 < σ < 1.
Observe that

∆gβh0 − feηΓeβh0 + α−Θ = −β + fβh0 − feηΓeβh0 + α−Θ,

so if we choose β = β1 < 0 small enough, then H := β1h0 is a subsolution
of (2.8), while if we choose β = β2 > 0 large enough, then H := β2h0 is a
supersolution of (2.8).

We consider the space

X =

{
H ∈ H1(M, g)

∫
M
feηΓeH <∞

}
,

and the energy functional

E(H) =
1

2

∫
M
|∇gH|2 +

∫
M
feηΓF (H) +

∫
M

(−α+ Θ)H, (2.9)

where

F (H(x)) =


eH(x)(H −H(x)) H < H(x),

eH − eH(x) H ∈ [H(x), H(x)],

eH(x)(H −H(x)) H > H(x).

Observe that since h0 ∈ L∞(M, g) and feηΓ ∈ L1(B(p, γ)), then H,H ∈ X,
which means that the functional E is well defined in X. Since∫

M
−∆g(ηΓ) = − lim

a→0

∫
∂B(p,a)

∂Γ

∂r
= 8π,

we conclude that ∫
M

Θ =

∫
M

(−∆g(ηΓ)− 8πδp) = 0.

Besides α > 0, so the functional E is coercive in X. We claim that E attains
a minimum in X. In fact, taking Hn ∈ X such that

lim
n→∞

E(Hn) = inf
H∈X

E(H) > −∞,

and passing to a subsequence if necessary, we obtain

Hn → H ∈ X (in L2), ∇gHn ⇀ ∇gH (weakly in L2), E(H) = inf
H∈X

E(H).
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Observe that if we take ϕ ∈ C∞(M) then H + ϕ ∈ X, we can differentiate
and obtain

∂

∂t
E(H+ tϕ)

∣∣∣∣
t=0

= 0, for all ϕ ∈ C∞(M, g)

or ∫
M
∇gH · ∇gϕ+

∫
M
feηΓG(H)ϕ+

∫
M

(−α+ Θ)ϕ = 0, (2.10)

where

G(H) =


eH(x) H < H(x),
eH H ∈ [H(x), H(x)],

eH(x) H > H(x).

By suitably approximating H1 = (H −H)+, we can use it as a test function
in (2.10) and obtain∫

M
∇gH · ∇gH1 +

∫
M
feηΓG(H)H1 +

∫
M

(−α+ Θ)H1 = 0.

Since H is a subsolution for equation (2.8), we have∫
M
∇gH · ∇gH1 +

∫
M
feηΓeHH1 +

∫
M

(−α+ Θ)H1 ≤ 0.

Observe that ∫
M
feηΓG(H)H1 =

∫
M
feηΓeHH1.

From the above calculations we deduce∫
M
|∇gH1|2 ≤ 0,

hence H1 ≡ C for some constant C. If C > 0, necessarily C ≡ H1 ≡ H −H
almost everywhere. Thus, H = H+ C, and (2.10) traduces into∫

M
∇gH · ∇gϕ+

∫
M
feηΓeHϕ+

∫
M

(−α+ Θ)ϕ = 0,

for all ϕ ∈ C∞(M), which contradicts the fact that H solves

−∆gH + fH = β1,

or in other words, the fact that H is not a solution of problem (2.8). Hence
H1 ≡ 0, which implies H ≤ H. In a similar way, we find H ≤ H and hence

H(x) ≤ H(x) ≤ H(x), a.e. x ∈M.

Note that ∫
M
∇gH · ∇gϕ+

∫
M
feηΓeHϕ+

∫
M

(−α+ Θ)ϕ = 0, (2.11)

for all ϕ ∈ C∞(M, g). Besides, since the functional E is strictly convex and
coercive, we conclude that H is the unique minimizer in X.
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So far we have proven that problem (2.1) has a unique solution G which is
smooth away from the singularity point p and in local conformal coordinates
around p it has the form

G(x) = η

[
−4 log |x| − 2 log

(
1√
2

log
1

|x|

)]
+H(x),

where H ∈ X ∩ L∞(M, g), is the unique minimizer of the functional E
defined in X by (2.9).

Next we will further study the form of H near p, which in particular yields
its continuity at p. For this purpose we use local conformal coordinates
around p.

Let us consider the problem{
−∆gJ = α in B(0, γ2 ),

J = H on ∂B(0, γ2 ).

This problem has a unique solution J , which is smooth in B(0, γ2 ). So we
can expand J as

J =
∞∑
k=0

bkr
k = b0 +O(r).

We write H = J + F , therefore F solves −∆gF +
f

r4

2

log2 r
eJ eF − 1

r2

2

log2 r
= 0 in B(0, γ2 ),

F = 0 on ∂B(0, γ2 ),

because ηΓ ≡ Γ in B(0, γ2 ). Since F ∈ L2(B(0, γ2 )) we can expand it as

F(r, θ) =
∞∑
k=0

ak(r)e
ikθ.

Observe that

f(x)

r2
=
κ1r

2 cos2(θ) + κ2r
2 sin2(θ) + κ3r

2 sin θ cos θ

r2
+O(r) = a(θ) +O(r),

for r 6= 0. Besides, β1 ≤ a(θ) ≤ β2. Thus

f(x)

r4

2

log2 r
eJ eF − 1

r2

2

log2 r
=

1

r2

2

log2 r

[
(a(θ) +O(r))eJ+F − 1

]
.

Moreover, since H ∈ L∞(B(0, γ2 )) we have eJ+F ∈ L2(B(0, γ2 )), so

1

r2

2

log2 r

[
(a(θ) +O(r))eJ+F − 1

]
=
∞∑
k=0

mk(r)e
ikθ,

where

|mk(r)| ≤
C

r2

1

log2 r
, ∀k ≥ 0,
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for a constant C independent of k. Now, we study the behavior of the
coefficients ak(r). For this purpose let us remember that

∆u(r, θ) =
∂2u

∂r2
+

1

r

∂u

∂r
+

1

r2

∂2u

∂θ2
.

For k ≥ 1, we see that ak(r) satisfies the ordinary differential equation

−∂
2ak
∂r2

(r)− 1

r

∂ak
∂r

(r) +
k2

r2
ak(r) = mk(r), 0 < r <

γ

2
, (2.12)

under the conditions

ak

(γ
2

)
= 0, ak(r) ∈ L∞

([
0,
γ

2

])
. (2.13)

We recall that the L∞-condition comes from the fact that F ∈ L∞(B(0, γ2 )).
Let us make the change of variables r = et, Ak(t) = ak(e

t), Mk(t) = mk(e
t),

so the previous problem transform into

−d
2Ak
dt2

(t) + k2Ak(t) = Mk(t), −∞ < t < log
γ

2
, (2.14)

under the conditions

Ak

(
log

γ

2

)
= 0, Ak ∈ L∞

((
−∞, log

γ

2

])
. (2.15)

Besides, |Mk(t)| ≤ Ct−2 for all k ≥ 1. All the solutions of the homogeneous
equation are given by linear combinations of ekt and e−kt and a particular
solution Apartk of the non-homogeneous equation (2.14) is given by the
variation of parameter formula. We conclude that this problem has a
solution of the form

C1e
kt + C2e

−kt +Apartk .

By the L∞-condition we conclude that C2 = 0 and by the boundary
condition in (2.15) we deduce C1 = 0. This implies that the null function
is the only solution of the homogeneous equation under condition (2.15).
Hence, this problem has a unique solution Ak(t). We claim that for a
constant C independent of k we have

|Ak(t)| ≤ C
1

k2t2
. (2.16)

The proof of this fact is based on maximum principle: Observe that since
k2 > 0, the operator

− d2

dt2
+ k2

satisfies the weak maximum principle on bounded subsets of (−∞, log γ
2 ].

Let us prove that φ = C1
k2t2

+ ρe−kt is a non-negative supersolution for this
problem. Observe first that since Ak(t) is bounded, there exist τρ such that

Ak(t) ≤ φ(t), for all t ∈ (−∞, τρ].
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Besides,(
− d2

dt2
+ k2

)
φ = −6C1

1

k2t4
+ C1

1

t2
≥Mk(t), ∀t ∈

(
τρ, log

γ

2

)
,

where the last inequality is valid if we choose C1 large enough. Observe also
that φ(t) ≥ Ak(t) for t = τρ, log γ

2 . Hence, by weak maximum principle we
conclude that for all ρ > 0

Ak(t) ≤
C1

k2t2
+ ρe−kt, ∀t ∈

(
−∞, log

γ

2

]
.

Taking the limit ρ → 0 in the last expression, we conclude that Ak(t) ≤
C 1
k2t2

. Analogously, we now prove that ϕ = − C2
k2t2
− ρe−kt is a non-positive

subsolution for this problem. Since Ak(t) is bounded, there exist τρ such
that

ϕ(t) ≤ Ak(t), ∀t ∈ (−∞, τρ].
Besides,(

− d2

dt2
+ k2

)
ϕ = 6C2

1

k2t4
− C2

1

k2t2
≤Mk(t), ∀t ∈

(
τρ, log

γ

2

)
,

where the last inequality is valid if we choose C2 large enough. Observe also
that ϕ(t) ≤ Ak(t) for t = τρ, log γ

2 . Hence, by weak maximum principle we
conclude that for all ρ > 0

− C2

k2t2
− ρe−kt ≤ Ak(t), ∀t ∈

(
−∞, log

γ

2

]
.

Taking the limit ρ → 0 in the last expression, we conclude (2.16). Finally,
coming back to the variable r we conclude that there exist a unique solution
ak(r) of problem (2.12)-(2.13), and for a constant C independent of k we
have

|ak(r)| ≤ C
1

k2 log2 r
, 0 < r <

γ

2
.

Now we deal with a0(r). Observe that

eF = ea0(r)

(
1 +O

(
1

log2 r

))
, eJ = eb0(1 +O(r)),

and

a(θ) = α0 +

∞∑
k=1

αke
ikθ, with α0 > 0,

so we conclude that a0(r) satisfies the ordinary differential equation

−∂
2a0(r)

∂r2
− 1

r

∂a0(r)

∂r
+ 2

α0e
b0ea0(r) − 1

r2 log2 r
= O

(
1

r2 log4 r

)
,

under the following conditions

a0

(γ
2

)
= 0, a0 ∈ L∞

([
0,
γ

2

])
.
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We make the change of variables r = et, ã0(t) = a0(et), so the previous
problem transform into

−d
2ã0

dt2
+ 2

α0e
b0eã0 − 1

t2
= O

(
1

t4

)
, (2.17)

under the conditions

ã0

(
log

γ

2

)
= 0, ã0 ∈ L∞

((
−∞, log

γ

2

])
. (2.18)

The L∞-condition implies that there exist a sequence tn → −∞ such that

ã0(tn)→ L, as n→∞,
where L = − log(α0e

b0). If not there exist M < 0 such that

|α0e
b0eã0 − 1| ≥ ε > 0, ∀t < M,

which means that ∣∣∣∣d2ã0

dt2

∣∣∣∣ ≥ C ε

t2
, ∀t < M.

Thus

|ã0| ≥ Cε log |t|, ∀t < M,

so ã0 is unbounded, a contradiction.
We claim that the problem (2.17,2.18) has at most one solution. In fact,

let us suppose by contradiction that u1 and u2 are two diferent solutions.
We define u = u1 − u2, which satisfies the problem

−d
2u

dt2
+ 2α0e

b0c(t)u = 0,

under the conditions,

u
(

log
γ

2

)
= 0, u ∈ L∞

((
−∞, log

γ

2

])
,

and where

c(t) =

{
0 if u1(t) = u2(t),

1
t2
eu1(t)−u2(t)

u1(t)−u2(t) if u1(t) 6= u2(t).

Observe that c(t) ≥ 0, so we can apply the strong maximum principle in
bounded domains for this problem. Moreover, from the L∞ condition we
deduce that there exists a sequence tn such that u(tn) → 0 as n → ∞ (the
proof of this fact is the same that we gave before). From this two facts, we
deduce easily that u1 ≡ u2.

Let us make the change of variables −t = es, A0(s) = ã0(−es), so the
previous problem transform into

−d
2A0

ds2
+
dA0

ds
+ 2(α0e

b0eA0 − 1) = O(e−2s), (2.19)

under the conditions

A0

(
log
(
− log

γ

2

))
= 0, A0 ∈ L∞

([
log
(
− log

γ

2

)
,∞
))

.
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We look for a solution of this problem of the form A0(s) = L + φ(s), so φ
solves the differential equation

−d
2φ

ds2
+
dφ

ds
+ 2φ = N(φ) +O(e−2s),

where

N(φ) = −2(eφ − φ− 1).

Observe that φ+ = e2s, φ− = e−s are two linear independent solutions of
the homogeneous equation.

From the previous analysis, we deduce that there exists a sequence
sn → ∞ such that φ(sn) = δn → 0, as n → ∞. We make the change

of variables φ̃n(τn) = φ(s)− δnφ−(τn), where τn = s− sn, so φ̃n ∈ L∞ solves
the problem{
−φ̃′′n + φ̃′n + 2φ̃n = N(φ̃n + δe−τn) + e−2snO(e−2τn) τn ∈ (0,∞),

φ̃n(0) = 0.
(2.20)

Let us study the linear problem{
−ϕ′′ + ϕ′ + 2ϕ = ω in (0,∞),

ϕ(0) = 0, ϕ ∈ L∞(0,∞)

for ω ∈ C([0,∞)) given. This problem has an explicit and unique solution
ϕ = T [g], in fact

ϕ(t) = C1e
λ+t + C2e

λ−t + eλ+t
∫ t

0

eλ−sω(s)

3e2s
ds− eλ−t

∫ t

0

eλ+sω(s)

3e2s
ds

and we deduce that C1 = 0 and C2 = 0 due to the L∞ condition and the
value at 0 of ϕ, respectively. problem (2.20) can be written as

φ̃n = T [N(φ̃n + δe−τn) + e−2snO(e−2τn)] := A[φ̃n]. (2.21)

We consider the set

Bε = {ϕ ∈ C([0,∞)) : ‖ϕ‖∞ ≤ ε} .
It is easy to see that if sn is large enough and δn small enough we have

‖A[φ̃1
n]−A[φ̃2

n]‖∞ ≤ Cε‖φ̃1
n − φ̃2

n‖,

‖A[φ̃n]‖ ≤ Cε,
and where C is independent of n. It follows that for all sufficiently small
ε we get that A is a contraction mapping of Bε (provided n large enough),
and therefore a unique fixed point of A exists in this region. We deduce
that there exists a unique solution A0 of problem (2.19), and it has the form
A0(s) = L + φ(s), where L is a fixed constant, and φ(s) → 0 as s → ∞.
This concludes the proof of Lemma 2.1. �
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3. Construction of a first approximation

In this section we will build a suitable approximation for a solution of
problem (1.8) which is large exactly near the point p. The “basic cells” for
the construction of an approximate solution of problem (1.8) are the radially
symmetric solutions of the problem{

∆w + λ2ew = 0 in R2,
w(x) → 0 as |x| → ∞. (3.1)

which are given by the one-parameter family of functions

wδ(|x|) = log
8δ2

(λ2δ2 + |x|2)2
,

where δ is any positive number. We define ε = λδ. In order to construct
the approximate solution we consider the equation

∆F − δ2

r2
eF = 0, (3.2)

in the variable r = |x|/ε and we look for a radial solution F = F (r), away
from r = 0. For this purpose we solve problem (3.2) under the following
initial conditions

F (1/δ) = 0, F ′(1/δ) = 0.

We make the change of variables r = et, V (t) = F (r), so that equation (3.2)
transforms into

V ′′ − δ2eV = 0.

We consider the transformation V (s) = Ṽ (δs), so Ṽ solves problem

Ṽ ′′ − eṼ = 0, Ṽ (δ| log δ|) = 0, Ṽ ′(δ| log δ|) = 0.

This problem has a unique regular solution, which blows-up at some finite
radius γ > 0. Coming back to the variable r = |x|/ε, we conclude that the

solution F (r) is defined for all 1/δ ≤ r ≤ Ce1/δ = C̃/λ, for some constants

C, C̃. Here we have used the definition of δ, see (3.3). Besides, we extend by
0 the function F for r ∈ [0, 1/δ), which means F (r) = 0, for all r ∈ [0, 1/δ)

and we denote by F̃ (|x|) = F (|x|/ε). A first local approximation of the
solution, in local conformal coordinates around p, is given by the radial
function uε(x) = wδ(|x|) + F̃ (|x|).

In order to build a global approximation, let us consider η a smooth
radial cutoff function such that η(r) = 1 if r ≤ C1δ and η(r) = 0 if
r ≥ C2δ, for constants 0 < C1 < C2. We consider as initial approximation
Uε = ηuε + (1 − η)G, where G is the Green function that we built in the
previous section. In order to have a good approximation around p we have
to adjust the parameter δ. The good choice of this number is

log 8δ2 = −2 log

(
1√
2

log
1

λ

)
+H(p), (3.3)
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where H is defined in Section 2. With this choice of the parameter δ, the
function uε is approaching the Green function G around p.

A useful observation is that u satisfies problem (1.8) if and only if

v(y) = u(εy) + 4 log λ+ 2 log δ

satisfies

∆gv − λ−2f(εy)ev + ev + ε2α = 0, y ∈Mε, (3.4)

where Mε = ε−1M .
We denote in what follows p′ = ε−1p and

Ũε(y) = Uε(εy) + 4 log λ+ 2 log δ,

for y ∈ Mε. This means precisely in local conformal coordinates around p
that

Ũε(y) =η(ε|y|)
(

log
1

(1 + |y|2)2
+ F̃ (ε|y|)

)
+ (1− η(ε|y|)) (G(εy) + 4 log λ+ 2 log δ) .

Let us consider a vector k ∈ R2. We recall that wδ(|x − k|) is also a
solution of problem (3.1). To solve problem (3.4), we need to modify
the first approximation of the solution, in order to have a new parameter
related to translations. More precisely, we consider for |k| � 1 the new first
approximation of the solution (in the expanded variable)

Vε(y) =η(ε|y|)
(

log
1

(1 + |y − k|2)2
+ F̃ (ε|y|)

)
+ (1− η(ε|y|)) (G(εy) + 4 log λ+ 2 log δ) .

We will denote by vε the first approximation of the solution in the original
variable, which means

vε(x) = η(|x|)
(

log
8δ2

(ε2 + |x− εk|2)2
+ F̃ (|x|)

)
+ (1− η(|x|))G(x).

Hereafter we look for a solution of problem (3.4) of the form v(y) =
Vε(y) + φ(y), where φ represent a lower order correction. In terms of φ,
problem (3.4) now reads

L(φ) = N(φ) + E, in Mε, (3.5)

where

L(φ) :=∆gφ− λ−2f(εy)eVεφ+ eVεφ,

N(φ) :=λ−2f(εy)eVε(eφ − 1− φ)− eVε(eφ − 1− φ),

E :=− (∆gVε − λ−2f(εy)eVε + eVε + ε2α).
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4. The linearized operator around the first approximation

In this section we will develop a solvability theory for the second-order
linear operator L defined in (3.5) under suitable orthogonality conditions.
Using local conformal coordinates around p′, then formally the operator L
approaches, as ε, |k| → 0, the operator in R2

L(φ) = ∆φ+
8

(1 + |z|2)2
φ,

namely, equation ∆w + ew = 0 linearized around the radial solution
w(z) = log 8

(1+|z|2)2
. An important fact to develop a satisfactory solvability

theory for the operator L is the non-degeneracy of w modulo the natural
invariance of the equation under dilations and translations. Thus we set

z0(z) =
∂

∂s
[w(sz) + 2 log s]|s=1, (4.1)

zi(z) =
∂

∂ζi
w(z + ζ)|ζ=0, i = 1, 2. (4.2)

It turns out that the only bounded solutions of L(φ) = 0 in R2 are precisely
the linear combinations of the zi, i = 0, 1, 2, see [2] for a proof. We define
for i = 0, 1, 2,

Zi(y) = zi(y − k).

Additionally, let us consider R0 a large but fixed number R0 > 0 and χ a
radial and smooth cut-off function such that χ ≡ 1 in B(k,R0) and χ ≡ 0
in B(k,R0 + 1)c.

Given h of class C0,β(Mε), we consider the linear problem of finding a
function φ such that for certain scalars ci, i = 1, 2, one has L(φ) = h+

∑2
i=1 ciχZi in Mε,∫

Mε

χZiφ = 0 for i = 1, 2.
(4.3)

We will establish a priori estimates for this problem. To this end we define,
given a fixed number 0 < σ < 1, the norm

‖h‖∗ = ‖h‖∗,p := sup
Mε

(max{ε2, |y|−2−σ})−1|h|. (4.4)

Here the expression max{ε2, |y|−2−σ} is regarded in local conformal
coordinates around p′ = ε−1p. Since local coordinates are defined up to
distance ∼ 1

ε that expression makes sense globally in Mε.
Our purpose in this section is to prove the following result.

Proposition 4.1. There exist positive numbers ε0, C such that for any
h ∈ C0,β(Mε), with ‖h‖∗ < ∞ and for all k such that |k| ≤ Cλ/δ, there
is a unique solution φ = T (h) ∈ C2,β(Mε) of problem (4.3) for all ε < ε0,
which defines a linear operator of h. Besides,

‖T (h)‖∞ ≤ C log

(
1

ε

)
‖h‖∗. (4.5)
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Observe that the orthogonality conditions in problem (4.3) are only taken
respect to the elements of the approximate kernel due to translations.

The next Lemma will be used for the proof of Proposition 4.1. We obtain
an a priori estimate for the problem L(φ) = h in Mε,∫

Mε

χZiφ = 0 for i = 1, 2.
(4.6)

We have the following estimate.

Lemma 4.1. There exist positive constants ε0, C such that for any φ
solution of problem (4.6) with h ∈ C0,β(Mε), ‖h‖∗ < ∞ and any k,
|k| ≤ Cλ/δ

‖φ‖∞ ≤ C log

(
1

ε

)
‖h‖∗,

for all ε < ε0.

Proof. We carry out the proof by a contradiction argument. If the above
fact were false, there would exist sequences (εn)n∈N, (kn)n∈N such that
εn → 0, |kn| → 0 and functions φn, hn with ‖φn‖∞ = 1,

log(ε−1
n )‖hn‖∗ → 0,

such that {
L(φn) = hn in Mεn ,∫

Mεn
χZiφn = 0 for i = 1, 2. (4.7)

A key step in the proof is the fact that the operator L satisfies a weak
maximum principle in regions, in local conformal coordinates around p, of
the form Aε = B(p′, ε−1γ/2) \ B(p′, R), with R a large but fixed number.

Consider the function z0(r) = r2−1
r2+1

, radial solution in R2 of

∆z0 +
8

(1 + r2)2
z0 = 0.

We define a comparison function

Z(y) = z0(a|y − p′|), y ∈Mε.

Let us observe that

−∆Z(y) =
8a2(a2|y − p′|2 − 1)

(1 + a2|y − p′|2)3
.

So, for 100a−2 < |y − p′| < ε−1γ/2, we have

−∆Z(y) ≥ 2
a2

(1 + a2|y − p′|2)2
≥ a−2

|y − p′|4 .

On the other hand, in the same region,

eVε(y)Z(y) ≤ C 1

|y − p′|4 .
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Hence if a is taken small and fixed, and R > 0 is chosen sufficiently large
depending on this a, then

∆Z + eVεZ < 0, in Aε.

Since Z > 0 in Aε, we have

L(Z) < 0, in Aε.

We conclude that L satisfies weak maximum principle in Aε, namely if
L(φ) ≤ 0 in Aε and φ ≥ 0 on ∂Aε, then φ ≥ 0 in Aε.

We now give the proof of the Lemma in several steps.

STEP 1. We claim that

sup
y∈Mεn\B(p/εn,ρ/εn)

|φn(y)| = o(1),

where ρ is a fixed number. In fact, coming back to the original variable by
the transformation

φ̂n(x) = φn

(
x

εn

)
, x ∈M.

We can see that φ̂n satisfies the equation

∆gφ̂n − fevεn φ̂n + λ2
ne
vεn φ̂n =

1

ε2
n

hn

(
x

εn

)
, (4.8)

where

vεn(x) = Vεn

(
x

εn

)
− 4 log λn − 2 log δ,

is the approximation of the solution in the original variable. Taking n→∞,
we can see that φ̂n converges uniformly over compacts ofM\{p} to a function

φ̂ ∈ H1(M) ∩ L∞(M) solution of the problem

∆gφ̂− feJ φ̂ = 0, in M \ {p} (4.9)

where J is the limit of vεn . We claim that φ̂ ≡ 0, in fact, we consider the
unique solution Φ of the problem

∆gΦ−min{feJ , 1}Φ = −δp, in M.

Using local conformal coordinates around p we expand

Φ(x) = − 1

2π
log(|x|) +H(x)

for H bounded. Since φ̂ ∈ L∞(M), we conclude that for all sufficiently small
ε and τ we have

|φ̂(x)| ≤ εΦ(x), x ∈ ∂B(0, τ).
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Multiplying (4.9) by ϕ = (φ̂ − εΦ)+, and integrating by parts over Mτ =
M \ Uτ , where Uτ is the neighborhood around p under the local conformal
coordinates that we used, we have∫

Mτ

|∇gϕ|2 +

∫
Mτ

feJϕ2 + ε

∫
Mτ

eJϕΦ = 0.

Since Φ ≥ 0, we have ∫
Mτ

|∇gϕ|2 +

∫
Mτ

feJϕ2 ≤ 0.

Hence ϕ = (φ̂ − εΦ)+ = 0 in Mτ , so φ̂ ≤ εΦ in Mτ . Multiplying by

ϕ = (φ̂+ εΦ)− and integrating by parts, we have (φ̂+ εΦ)− = 0, thus

|φ̂(x)| ≤ εΦ(x), x ∈Mτ .

Taking ε→ 0 and τ → 0, we conclude that φ̂ ≡ 0.

STEP 2. Let us consider the transformation

φ̃n(y) = φn(y + p′n).

Thus φ̃n satisfies the equation

∆gφ̃n − λ−2
n f(εny + pn)eVεn (y+p′n)φ̃n + eVεn (y′+p′n) = hn(y + p′n),

in Mεn − {p′n}. Taking the limit n → ∞ in the last equation (and also

in problem (4.7)), we see that φ̃n converges uniformly over compacts of

Mεn − {p′n} to a bounded solution φ̃ of the problem

L(φ̃) = 0 in R2,

∫
R2

χZiφ̃ = 0, i = 1, 2.

Hence φ̃(x) = C0Z0(x).
In what follows we assume without loss of generality that C0 ≥ 0. If

C0 < 0, we work with −φn instead of φn and the following analysis is also
valid.

STEP 3. In this step we will construct a non-negative supersolution
in the region, in local conformal coordinates around p′n, Bn = B(kn, ρ) \
B(kn, ε

−1
n γ/2), ρ > 0, where the weak maximum principle is valid. We work

first in the case C0 > 0. Let us consider the problem −∆ψn − eVεψn = 1 in Bn,
ψn(y) = C0 on ∂B(kn, ρ),
ψn(y) = o(1) on ∂B(kn, ε

−1
n γ/2).

(4.10)

We define r = |y − kn|. A direct computation shows that

ψn(y) = C0Z0(r) + CεY (r) +W (r),
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where

Y (r) = Z0

∫ r

ρ

1

sZ2
0 (s)

ds, W (r) = −Z0(r)

∫ r

ρ
sY (s)ds+Y (r)

∫ r

ρ
sZ0(s)ds,

and

Cε =
o(1)− C0Z0(ε−1

n γ/2)−W (ε−1
n γ/2)

Y (ε−1
n γ/2)

.

We choose ρ > R, where R is the fixed minimal radio for which the weak
maximum principle is valid in the region Bn. Observe that

L(ψn) = −1− λ−2f(εy)eVεψn ≤ hn = L(φn).

Moreover, from steps 1 and 2, we deduce that

ψn ≥ φn, on ∂Bn, (4.11)

which means that ψn is a supersolution for the problem

L(φn) = hn, in Bn.

Since ρ > R, we can apply the weak maximum principle and we deduce that
Ψn ≥ φn in Bn. Observe that∣∣∣∣dψn(ρ)

dr

∣∣∣∣ ≥ ε−1
n . (4.12)

In the other hand
dZ0

dr
= −C r

(r2 − 1)2
, (4.13)

where C > 0 is a constant independent of n. Since φn converges over
compacts of the expanded variable to the function C0Z0, we deduce from
(4.11), (4.12) and (4.13) that the partial derivative of φn respect to r is
discontinuous at |y− kn| = ρ, for large values of n, which is a contradiction.

In the case C0 = 0, φn converges to 0 over compacts of the expanded
variable. Let us consider the problem −∆ψn − eVεψn = 1 in Bn,

ψn(y) = 1/2 on ∂B(kn, ρ),
ψn(y) = o(1) on ∂B(kn, ε

−1
n γ/2).

It is easy to see that ψn ≤ 1/2 in Bn. Using the previous maximum principle
argument we deduce that φn ≤ ψn ≤ 1/2 Applying the same argument for
the problem that −φn satisfies, we conclude −φn ≤ 1/2. Thus,

‖φn‖∞ ≤ 1/2,

which is a contradiction with the fact ‖φn‖∞ = 1. This finishes the proof of
the a priori estimate. �

We are now ready to prove the main result of this section.
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Proof of Proposition 4.1. We begin by establishing the validity of the a
priori estimate (4.5). The previous lemma yields

‖φ‖∞ ≤ C log

(
1

ε

)[
‖h‖∗ +

2∑
i=1

|ci|
]
, (4.14)

hence it suffices to estimate the values of the constants |ci|, i = 1, 2. We
use local conformal coordinates around p, and we define again r = |y| and
we consider a smooth cut-off function η(r) such that η(r) = 1 for r < 1√

ε
,

η(r) = 0 for r > 2√
ε
, |η′(r)| ≤ C√ε, |η′′(r)| ≤ Cε. We test the first equation

of problem (4.3) against ηZi, i = 1, 2 to find

〈L(φ), ηZi〉 = 〈h, ηZi〉+ ci

∫
Mε

χ|Zi|2. (4.15)

Observe that

〈L(φ), ηZi〉 = 〈φ,L(ηZi)〉,
and

L(ηZi) = Zi∆η + 2∇η · ∇Zi + η(∆Zi + eVεZi)− ηλ−2f(εy)eVεZi.

We have

η(∆Zi + eVεZi) = εO((1 + r)−3).

Observe that

λ−2f(εy)eVε(y) = λ2δ2f(x)evε(x), where y =
x

ε
, x ∈M,

thus

ηλ−2f(εy)eVεZi = O(ε2).

Since ∆η = O(ε), ∇η = O(
√
ε), and besides Zi = O(r−1), ∇Zi = O(r−2),

we find

Zi∆η + 2∇η · ∇Zi = O(ε
√
ε).

From the previous estimates we conclude that

|〈φ,L(ηZi)〉| ≤ C
√
ε‖φ‖∞.

Combining this estimate with (4.14) and (4.15) we obtain

|ci| ≤ C
[
‖h‖∗ +

√
ε log

1

ε

]
,

which implies

|ci| ≤ C‖h‖∗ i = 1, 2.

It follows from (4.14) that

‖φ‖∞ ≤ C log

(
1

ε

)
‖h‖∗,
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and the a priori estimate (4.5) has been thus proven. It only remains to
prove the solvability assertion. For this purpose let us consider the space

H =

{
φ ∈ H1(Mε) :

∫
Mε

χZiφ = 0, i = 1, 2.

}
endowed with the inner product,

〈φ, ψ〉 =

∫
Mε

∇gφ∇gψ +

∫
Mε

λ−2f(εy)eVεφψ.

Problem (4.3) expressed in weak form is equivalent to that of finding φ ∈ H
such that

〈φ, ψ〉 =

∫
Mε

[
eVεφ+ h+

2∑
i=1

ciχZi

]
ψ, for all ψ ∈ H.

With the aid of Riesz’s representation theorem, this equation gets
rewritten in H in the operator form φ = K(φ) + h̃, for certain h̃ ∈ H,
where K is a compact operator in H. Fredholm’s alternative guarantees
unique solvability of this problem for any h provided that the homogeneous
equation φ = K(φ) has only zero as solution in H. This last equation is
equivalent to problem (4.3) with h ≡ 0. Thus, existence of a unique solution
follows from the a priori estimate (4.5). The proof is complete. �

5. The nonlinear problem

We recall that our goal is to solve problem (3.5). Rather than doing so
directly, we shall solve first the intermediate problem L(φ) = N(φ) + E +

∑2
i=1 ciχZi in Mε,∫

Mε

χZiφ = 0 for i = 1, 2,
(5.1)

using the theory developed in the previous section. We assume that the
conditions in Proposition (4.1) hold. We have the following result

Lemma 5.1. Under the assumptions of Proposition (4.1) there exist positive
number C, ε0 such that problem (5.1) has a unique solution φ which satisfies

‖φ‖∞ ≤ Cε log
1

ε
,

for all ε < ε0.

Proof. In terms of the operator T defined in Proposition (4.1), problem
(5.1) becomes

φ = T (N(φ) + E) =: A(φ). (5.2)

For a given number ϑ > 0, let us consider the space

Hϑ =

{
φ ∈ C(Mε) : ‖φ‖∞ ≤ ϑε log

1

ε

}
.
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From Proposition (4.1), we get

‖A(φ)‖∞ ≤ C log

(
1

ε

)
(‖N(φ)‖∗ + ‖E‖∗).

Let us first measure how well Vε solves problem (3.4). Observe that

eVε(y) = λ4δ2evε(x), y =
x

ε
, x ∈M, (5.3)

so

‖eVε(y)‖∗ ≤ Cε.
As a consequence of the construction of the first approximation, the choice
of the parameter δ, the expansion of the Green function G around p, and
(5.3), a direct computation yields

‖E‖∗ ≤ Cε.
Now we estimate

N(φ) = λ−2f(εy)eVε(eφ − 1− φ)− eVε(eφ − 1− φ).

In one hand, from (5.3) we deduce

‖eVε(eφ − 1− φ)‖∗ ≤ Cε‖φ‖2∞.
In the other hand

λ−2f(εy)eVε(y) = λ2δ2evε(x), y =
x

ε
, x ∈M,

so

‖λ−2f(εy)eVε(eφ − 1− φ)‖∗ ≤ Cε−σ‖φ‖2∞.
We conclude,

‖N(φ)‖∗ ≤ Cε−σ‖φ‖2∞.
Observe that for φ1, φ2 ∈ Hϑ,

‖N(φ1)−N(φ2)‖∗ ≤ Cϑε1−σ log

(
1

ε

)
‖φ1 − φ2‖∞,

where C is independent of ϑ. Hence, we have

‖A(φ)‖∞ ≤ Cε log

(
1

ε

)
[ϑ2ε1−σ log

(
1

ε

)
+ 1],

‖A(φ1)−A(φ2)‖∞ ≤ Cε1−σ log

(
1

ε

)
‖φ1 − φ2‖∞.

It follows that there exist ε0, such that for all ε < ε0 the operator A is a
contraction mapping from Hϑ into itself, and therefore A has a unique fixed
point in Hϑ. This concludes the proof. �

With these ingredients we are now ready for the proof of our main result.



24 MANUEL DEL PINO AND CARLOS ROMÁN

6. Proof of Theorem 1.1 for n = 1

After problem (5.1) has been solved, we find a solution to problem (3.5),
and hence to the original problem, if k = k(ε) is such that

ci(k) = 0, i = 1, 2. (6.1)

Let us consider local conformal coordinates around p and define r = |y|.
We consider a smooth cut-off function η(r) such that η(r) = 1 for r < 1√

ε
,

η(r) = 0 for r > 2√
ε
, |η′(r)| ≤ C√ε, |η′′(r)| ≤ Cε. Testing the equation

L(φ) = N(φ) + E +
2∑
i=1

ciχZi,

against ηZi, i = 1, 2, we find

〈L(φ), ηZi〉 =

∫
Mε

[N(φ) + E]ηZi + ci

∫
Mε

χZ2
i , i = 1, 2.

Therefore, we have the validity of (6.1) if and only if

〈L(φ), ηZi〉 −
∫
Mε

[N(φ) + E]ηZi = 0, i = 1, 2.

We recall that in the proof of Proposition (4.1) we obtained

|〈φ,L(ηZi)〉| ≤ C
√
ε‖φ‖∞,

thus

|〈φ,L(ηZi)〉| ≤ Cε3/2 log
1

ε
.

Observe that
‖N(φ)‖∞ ≤ Cε2‖φ‖2∞,

so ∣∣∣∣∫
Mε

N(φ)ηZi

∣∣∣∣ ≤ Cε‖φ‖2∞ ≤ Cε3 log2 1

ε

Let us remember that

E = −∆Vε + λ−2f(εy)eVε − eVε − ε2α.

Using (5.3), we have ∫
Mε

eVεηZi = O(ε4).

We also have, ∫
Mε

ε2αηZi = O(ε).

Observe that

∆gVε(y) = ε2∆gvε(x), y =
x

ε
, x ∈M,

thus ∫
Mε

∆VεηZi = O(ε2).
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Also, by change of variables we have∫
Mε

f(εy)eVεηZi =

∫
M̃ε

f(p+ ε(y + k))eVε(y+k+p′)η(|y + k|)Zi(y + k + p′),

where M̃ε = Mε − k + p′. Using the fact that p is a local maximum of f of
value 0, we have

f(p+ ε(y + k)) = ε2〈(y + k), D2f(p)(y + k)〉+O(ε3),

where we used the fact that f ∈ C3(M). Thus

λ−2

∫
Mε

f(εy)eVεηZi = Ii + IIi,

where

Ii = δ2

∫
M̃ε

〈(y + k), Hf (p)(y + k)〉eVε(y+k+p′)η(|y + k|)Zi(y + k + p′)

IIi =

∫
M̃ε

O(ε)eVε(y+k+p′)η(|y + k|)Zi(y + k + p′).

Observe that eVε(y+k+p′)η(|y + k|)Zi(y + k + p′) = O((1 + |y|)−4), so

IIi = O(ε).

Finally, let us compute Ii. First, observe that 0 ∈ M̃ε. Let us consider a
fixed number A0, such that B1 = B(0, A0/

√
ε) ⊂ M̃ε ∩ supp(η(· + k)) =: B

and η(· + k) = 1 in B1. We have the decomposition B = B1 ∪ B2, where

B2 = Ω̃ε ∩ supp(η(·+ k)) \ B1. Also, observe that

Zi(y + k + p′) = C0
yi

1 + |y| , i = 1, 2,

where C0 is a fixed constant independent of ε. We have the following
computation

〈(y+k), D2f(p)(y+k)〉 = f11(p)(y1+k1)2+2f12(p)(y1+k1)(y2+k2)+f22(p)(y2+k2)2,

where f11(p) = ∂2f
∂y21

(p), f22(p) = ∂2f
∂y22

(p) and f12(p) = f21(p) = ∂2f
∂y1∂y2

(p). We

recall that

eVε(y+k+p′) =
H0

(1 + |y|2)2
(1 + C

√
ε+O(ε)), (6.2)

in the region Ω̃ε ∩ supp(η(·+ k)).

Let us define ti(y) = eVε(y+k+p′)η(|y + k|)Zi(y + k + p′) and compute I1.
We have the following calculations for i = 1∫
B
f11(p)(y1 + k1)2t1(y) =

∫
B1
f11(p)(y1 + k1)2t(y) +

∫
B2
f11(p)(y1 + k1)2t1(y)

= 2k1f11(p)

∫
B1
C0

y2
1

1 + |y|
H0

(1 + |y|2)2
+O(ε).
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In order to get the previous result, we used the fact that∫
B1

y1

1 + |y|
dy

(1 + |y|2)2
=

∫
B1

y3
1

1 + |y|
dy

(1 + |y|2)2
= 0,

and the expansion (6.2). We also have∫
B

2f12(p)(y1+k1)(y2+k2)t1(y) = 2k2f12(p)

∫
B1
C0

y2
1

1 + |y|
H0

(1 + |y|2)2
+O(ε),

where we used the fact that∫
B1

y1y2

1 + |y|
1

(1 + |y|2)2
=

∫
B1

y2
1y2

1 + |y|
1

(1 + |y|2)2
= 0,

and also the expansion (6.2). Finally, we have∫
B
f22(p)(y2 + k2)2t1(y) = O(ε),

where we used ∫
B1

y1y
2
2

1 + |y|
1

(1 + |y|2)2
= 0,

and also the expansion (6.2). From the above computations we conclude
that

I1 = 2δ2Ik1f11(p) + 2δ2Ik2f12(p) +O(ε),

where

I =

∫
B1
C0

y2
1

1 + |y|
H0

(1 + |y|2)2
> 0.

Similar computations yield

I2 = 2δ2Ik1f12(p) + 2δ2Ik2f22(p) +O(ε).

Summarizing, we have the system

δ2D2f(p)k = εb(k), (6.3)

where b is a continuous function of k of size O(1). Since p is a non-degenerate
critical point of f , we know that D2f(p) is invertible. A simple degree
theoretical argument, yields that system (6.3) has a solution k = O(λδ−1).
We thus obtain c1(k) = c2(k) = 0, and we have found a solution of the
original problem. The proof for the case k = 1 is thus concluded. �

7. Proof of Theorem 1.1 for general n

In this section we will detail the main changes in the proof of our main
result, in the case of multiple bubbling.

Let p1, . . . , pn be points such that f(pj) = 0 and D2f(pj) is positive
definite for each j. We consider the singular problem

∆gG− feG + 8π
k∑
j=1

δpj + α = 0, in M, (7.1)
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where δp designates the Dirac mass at the point p. A first remark we make is
that the proof of Lemma 2.1 applies with no changes (except some additional
notation) to find the result of Lemma 1.1. Indeed, the core of the proof is
the local asymptotic analysis around each point pj .

We define the first approximation in the original variable as

Uε =
n∑
j=1

ηju
j
ε +

1−
n∑
j=1

ηj

G,

where ηj is defined around pj as in Section 3 and, in local conformal

coordinates around pj , u
j
ε(x) = wδj (|x − kj |) + F̃j(|x|), for parameters

kj ∈ R2. We make the following choice of the parameters δj

log 8δ2
i = −2 log

(
1√
2

log
1

λ

)
+H(pi).

We also define the first approximation in the expanded variable around each
pj by

Vεj (y) = Uε(εjy) + 4 log λ+ 2 log δj , y ∈Mεj

where εj = λδj and Mεj = ε−1
j M .

We look for a solution of problem (1.8) of the form u(y) = Uε(x) + φ(x),
where φ represent a lower order correction. By simplicity, we denote also by
φ the small correction in the expanded variable around each pj . In terms of
φ, the expanded problem around pj

∆gv − λ−2f(εjy)ev + ev + ε2
jα = 0, y ∈Mεj

reads

Lj(φ) = Nj(φ) + Ej , in Mεj ,

where

Lj(φ) :=∆gφ− λ−2f(εjy)eVεjφ+ eVεjφ,

Nj(φ) :=λ−2f(εjy)eVεj (eφ − 1− φ)− eVεj (eφ − 1− φ),

Ej :=− (∆gVεj − λ−2f(εjy)eVεj + eVεj + εj
2α).

Next we consider the linearized problem around our first approximation
Uε. Given h of class C0,β(M), which by simplicity we still denote by h in the
expanded variable around each pj , we consider the linear problem of finding

a function φ such that for certain scalars cji , i = 1, 2; j = 1, . . . , n, one has
Lj(φ) = h+

∑2
i=1

∑n
j=1 c

j
iχjZij in Mεj ,∫

Mεj

χjZijφ = 0 for all i, j. (7.2)

Here the definitions of Zij and χj are the same as before for Zi and χ, with
the dependence of the point pj emphasized.
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To solve this problem we consider now the norm

‖h‖∗ =
n∑
j=1

‖h‖∗,pj . (7.3)

where ‖h‖∗,pj is defined accordingly with (4.4). With exactly the same proof
as in the case n = 1, we find the unique bounded solvability of problem (7.2)
for all small ε = max εi by φ = T (h), so that

‖T (h)‖∞ ≤ C log

(
1

ε

)
‖h‖∗. (7.4)

Then we argue as in the proof of Lemma 5.1 to obtain existence and
uniqueness of a small solution φ of the projected nonlinear problem

Lj(φ) = Nj(φ) + Ej +
∑2

i=1

∑n
j=1 c

j
iχjZij in Mεj ,∫

Mεj

χjZijφ = 0 for all i, j.

with

‖φ‖∞ ≤ Cε log
1

ε
.

After this, we proceed as in Section 6 to choose the parameters kj in such

a way that cji = 0 for all i, j. Summarizing, we have the system

D2f(pj)kj = εiδ
−2
i bj(k1, . . . , kn), (7.5)

which can be solved by the same degree-theoretical argument employed
before. The proof is concluded. �
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