LARGE CONFORMAL METRICS WITH PRESCRIBED
SIGN-CHANGING GAUSS CURVATURE

MANUEL DEL PINO AND CARLOS ROMAN

ABSTRACT. Let (M,g) be a two dimensional compact Riemannian
manifold of genus g(M) > 1. Let f be a smooth function on M such
that

f>0, f#0, minf=0.
Let p1,...,pn be any set of points at which f(p;) = 0 and D?f(p;) is
non-singular. We prove that for all sufficiently small A > 0 there exists
a family of “bubbling” conformal metrics gx = e€“*g such that their
Gauss curvature is given by the sign-changing function Ky, = —f + A%

Moreover, the family u, satisfies
1 1
ux(p;) = —4log A — 2log (E log X) +0(1)
and .
Ae"r 871'2(5pi, as A — 0,
i=1
where J, designates Dirac mass at the point p.

1. INTRODUCTION

Let (M,g) be a two-dimensional compact Riemannian manifold. We
consider in this paper the classical prescribed Gaussian curvature problem:
Given a real-valued, sufficiently smooth funtion x(z) defined on M, we want
to know if k can be realized as the Gaussian curvature K, of M for a metric
g1, which is in addition conformal to g, namely g; = e“g for some scalar
function v on M.

It is well known, by the uniformization theorem, that without loss of
generality we may assume that M has constant Gaussian curvature for g,
K, =: —a. Besides, the relation K, = k is equivalent to the following
nonlinear partial differential equation

Agu+re'+a=0, inM, (1.1)

where Ay, = divyV is the Laplace Beltrami operator on M. There is a
considerable literature on necessary and sufficient conditions on the function
k for the solvability of the PDE (1.1). We refer the reader in particular to
the classical references [3, 7, 12, 13, 14, 17] and to [5] for a recent review of
the state of the art for this problem.
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Integrating equation (1.1), assuming that M has surface area equal to
one, and using the Gauss-Bonet formula we obtain

/ ke'dug = / Kydpg = —o =2y (M), (1.2)
M M

where x (M) is the Euler characteristic of the manifold M.

In what follows we shall assume that the surface M has genus g(M)
greater than one, so that y(M) =2(1 — g(M)) < 0 and hence

—Ky=a>0.

Then (1.2) tells us that a necessary condition for existence is that x(x) be
negative somewhere on M. More than this, we must have that

/ kdpg < 0.
M
Indeed testing equation (1.1) against e™" we get
/ kdpg = —/ (IVgul* + a)e “du, < 0. (1.3)
M M

Solutions u to equation (1.2) correspond to critical points in the Sobolev
space H'(M, g) of the energy functional

1 u
Ei(u) = 2/]V[\Vgu|2d,ug — a/Mud,ug —/M Ke“dig.

As observed in [3], since o > 0, we have that if K < 0 and x # 0, then this
functional is strictly convex and coercive in H'(M, g). It thus have a unique
critical point which is a global minimizer of F,.

A natural question to ask is what happens when x changes sign. A drastic
change in fact occurs. If sup;; x > 0, then the functional E; is no longer
bounded below, hence a global minimizer cannot exist. On the other hand,
intuition would tell us that if k is “not too positive” on a set “not too big”,
then the global minimizer should persist in the form of a local minimizer.
This is in fact true, and quantitative forms of this statement can be found
in [1, 4].

We shall focus in what follows in a special class of functions x(z) which
change sign being nearly everywhere negative. Let f be a function of class
C3(M) such that

=0, f#£0, mA}anO-
For A > 0 we let
Iﬁj)\(l') = —f(.%') + )\27

so that our problem now reads

Agu— fe' + X %" +a =0, in M. (1.4)
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FIGURE 1. Bifurcation diagram for solutions of problem (1.4)

In [10], Ding and Liu proved that the global minimizer of E, persists as a
local minimizer uy of Ej, for any 0 < A < Ag. From (1.3) we see that

ve(l)”

Moreover, they established the existence of a second, non-minimizing
solution w) in this range. Uniqueness of the solution ug for A = 0, and
its minimizing character, tell us that we must have uy, — ug as A — 0 while
u) must become unbounded. The situation is depicted as a bifurcation
diagram in Figure 1.

The proof in [10] does not provide information on its asymptotic blowing-
up behavior or about the number of such “large” solutions. Borer,
Galimberti and Struwe [5] have recently provided a new construction of the
mountain pass solution for small A, which allowed them to identify further
properties of it under the following generic assumption: points of global
minima of f are non-degenerate. This means that if f(p) = 0 then D?f(p)
is positive definite. In [5] it is established that blowing-up of the family of
large solutions u) occurs only near zeros of f, and the associated metric
exhibits “bubbling behavior”, namely Euclidean spheres emerge around
some of the zero-points of f. In fact, the mountain-pass characterization let
them estimate the number of bubbling points as no larger than four. More
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precisely, they find that along any sequence A = A\, — 0, there exist points

p’f, . ,pﬁ, 1 <n <4, converging to p1,...,p, points of global minima of f
such that one of the following holds
(i) There exist e}, ...,e%, such that { /A — 0,i=1,...,k, and in local

conformal coordinates around p; there holds

up(e42) — ur(0) + log 8 — w(z) := log (1.5)

8
(1+ |z[?)*’
smoothly locally in R?. We note that
Aw+e¥ =0, inR2
(ii) In local conformal coordinates around p;, with a constant ¢; there
holds
ux(Ax) + 4log(N) + ¢; = woo (),
smoothly locally in R?, where wy, satisfies
Awgo + [1 — (Az,z)]e¥> =0, in R%
where A = 2 D?f(p;).

In this paper we will substantially clarify the structure of the set of large
solutions of problem (1.4) with a method that yields both multiplicity and
accurate estimates of their blowing-up behavior. Roughly speaking we
establish that for any given collection of non-degenerate global minima of
f, p1,..., Dk, there exist a solution uy blowing-up in the form (1.5) ezactly
at those points. Moreover

A 1 1
X Tog A’ ux(pi) og A og(\/ﬁ ogA> +0(1)

In particular if f has exactly m non-degenerate global minimum points, then
2™ distinct large solutions exist for all sufficiently small A.

In order to state our main result, we consider the singular problem
n
AgG — fe€ + 81 6y +a=0, in MM, (1.6)
i=1

where 9, designates the Dirac mass at the point p;. We have the following
result.

Lemma 1.1. Problem (1.6) has a unique solution G which is smooth away
from the singularities and in local conformal coordinates around p; it has the
form

G(z) = —4log|x| — 2log (\flog z |> H(z), (1.7)
where H(z) € C(M).

Our main result is the following.
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Theorem 1.1. Let p1,...,p, be points such that f(p;) = 0 and D?f(p;) is
positive definite for each i. Then, there exists a family of solutions u) to
(1.4) with

n
AZetr 87r25pi, as X — 0,
i=1
and uy — G uniformly in compacts subsets of M \ {p1,...,pr}. We define
1 ] . C; . .
c; = 567{@1)/2’ 5 = m, gy = Ay
where H is defined near p; by relation (2.2). In local conformal coordinates
around p;, there holds

. : 8
uy(eix) +4log A+ 2logdl — log —————,
)\( A ) g g0\ g(1+|$’2)2

uniformly on compact sets of R? as A — 0.

Our proof consists of the construction of a suitable first approximation
of a solution as required, and then solving by linearization and a suitable
Lyapunov-type reduction There is a large literature in Liouville type
equation in two-dimensional domains or compact manifold, in particular
concerning construction and classification of blowing-up families of solutions.
See for instance [6, 9, 11, 15, 16, 18] and their references.

We shall present the detailed proof of our main result in the case of one
bubbling point n = 1. In the last section we explain the necessary (minor,
essentially notational) changes for general n. Thus, we consider the problem

Agu— fe" + X %" +a =0, in M, (1.8)

under the following hypothesis: there exists a point p € M such that
f(p) =0 and D?f(p) is positive definite.

2. A NONLINEAR GREEN’S FUNCTION

We consider the singular problem
AyG — fe€ + 816, +a =0, in M, (2.1)

where J,, is the Dirac mass supported at p, which is assumed to be a point
of global non-degenerate minimum of f. In this section we will establish the
following result, which corresponds to the case n =1 in Lemma 1.1.

Lemma 2.1. Problem (2.1) has a unique solution G which is smooth away
from the singularities and in local conformal coordinates around p it has the
form
1
G(z) = —4log|x| —2log | —
(5) = ~logle] ~ 210g 5

where H(z) € C(M).

1
log |x|) + H(x), (2.2)
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Proof. In order to construct a solution to this problem, is important to
consider the equation, in local conformal coordinates around p, for v < 1

AG — fef +8mdy =0, in B(0,7). (2.3)
Since
—Alog — = 8ndy,
|z [*
if we write G = —4log |x| 4+ h(z), then h satisfies
Ah — f(x)|x1|46h —0, in B(0,7). (2.4)

Since p is a non-degenerate point of minimum of f, we may assume that,
in local conformal coordinates around p, there exist positive numbers (51, 5o
such that
Bilz|* < f(x) < Balzl?, (2.5)
for all x € B(0,7), if v is small enough. Letting r = |z|, it is thus important
to consider the equation
1

AV — ﬁeV =0, in B(0,7). (2.6)
For a radial function V' = V (r), this equation becomes
1 1
V() + V) = e =0 0<r <. (2.7)

We make the change of variables r = e, v(t) = V/(r), so that equation (2.7)
transforms into
d2
2"
from where it follows that

d (V(t)? ) _
@ < 2 — € = 0,

or v/(t)% = 2(e¥ + C), for some constant C. Choosing C = 0, we have

£ ()=t

Integrating and coming back to the original variable, we deduce that

V(r) = —2log (\}5 log i)

is a radial solution of equation (2.6). Note that, from condition (2.5) we
readily find that hq(z) = V(|z|) — log 51 is a supersolution of (2.4), while
ho(xz) = V(|x|) — log 2 is a subsolution of (2.4).

Now we deal with existence of a solution of problem (2.1). The previous
analysis suggests that the singular part of the Green’s function, in local
conformal coordinates around p, is

[(z) := —4log|z| + V(|x|),

(1) =e"®,  —oo <t <logy.
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so we look for a solution of (2.1) of the form v = nI' + H, where 7 is a
smooth cut-off function such that n = 1 in B(p, 3) and n = 0 in R?\ B(p, 7).
Therefore, H satisfies the equation

AGH — fe™e +a=—nfel —2V vV, [ —TA;n=:0, in M. (2.8)

Observe that fe™ € L'(B(p,v)). Next we find ordered global sub and
supersolutions for (2.8). Let us consider the problem

—Agho + fho =1, in M,

which has a unique non-negative solution of class C%°(M),0 < o < 1.
Observe that

AgBhy — fe™ ™™ +a—© = =B+ fBho — fe" €™ +a — O,

so if we choose 8 = (81 < 0 small enough, then H := f1hg is a subsolution
of (2.8), while if we choose 8 = f2 > 0 large enough, then H := (kg is a
supersolution of (2.8).

We consider the space

X = {H e H'(M,g) / fellel < oo},
M
and the energy functional

E(H) = ;/M |V H + /M fe™F(H) + /M(—a +0)H, (2.9)

where
MO (H ~ H(z))  H<H(z),
F(H(z)) = efl — e @) H € [H(z), H(z)],
@ (H - H(z)) H>H(z).

Observe that since hg € L>(M, g) and fe"™ € L'(B(p,~)), then H,H € X,
which means that the functional E is well defined in X . Since

or
/ —Ay(nl') = — lim — =8,
M a—0 8B(p,a) or

we conclude that

/M 0= /M(_Ag(nr) — 8n8,) = 0.

Besides o > 0, so the functional F is coercive in X. We claim that F attains
a minimum in X. In fact, taking H,, € X such that

nh—>HoloE(Hn) = I}relgc E(H) > —o0,
and passing to a subsequence if necessary, we obtain

H, —H € X (in L?), VyH, — V,H (weakly in L?), E(H) = bl[ng( E(H).
€
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Observe that if we take ¢ € C°(M) then H + ¢ € X, we can differentiate
and obtain

0 E(H + ty) =0, forallpeC>®(M,g)
ot 0
or
/ VyH - Vg +/ feG(H)p + / (—a+0)p =0, (2.10)
M M M
where

eH(@) H < H(x),
GH)=q e € [H(x), H(x)],
et (@) H > H(x).

By suitably approximating H; = (H —H )4, we can use it as a test function
n (2.10) and obtain

/ ng . Vng +/ f@nFG(H)Hl + / (—a + @)Hl =0.
M M M
Since H is a subsolution for equation (2.8), we have

/ VoH -V, H +/ feefl i +/ (—a+©)H; <0.
M M M

Observe that
/ feG(H / e el .

From the above calculations we deduce

/ |VgH:|* <0,

hence Hy = C for some constant C'. If C' > 0, necessarily C = Hy = H — H
almost everywhere. Thus, H = H + C, and (2 10) traduces into

/VgH-Vg<p+/ fe"FeHgo+/(a+9)90:
M M M

for all ¢ € C°°(M), which contradicts the fact that H solves
—AgH + fH = pi,

or in other words, the fact that H is not a solution of problem (2.8). Hence
H; =0, which implies H < H. In a similar way, we find H < H and hence

H(z) < H(z) < H(z), ae. x€ M.
Note that
/ VoH - Vg +/ feeto + / (—a+0)p=0, (2.11)
M M M

for all ¢ € C*°(M, g). Besides, since the functional E is strictly convex and
coercive, we conclude that H is the unique minimizer in X.
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So far we have proven that problem (2.1) has a unique solution G which is
smooth away from the singularity point p and in local conformal coordinates
around p it has the form

Gz) =1 —410g|:c—210g<\[10g| |>}+’H(x),

where H € X N L>®(M,g), is the unique minimizer of the functional F
defined in X by (2.9).

Next we will further study the form of H near p, which in particular yields
its continuity at p. For this purpose we use local conformal coordinates
around p.

Let us consider the problem

-AyJ = o in B(0,3),
J = H ondB(0,3).
This problem has a unique solution J, which is smooth in B(0, 3). So we
can expand J as

T = " =bo+O(r).
k=0
We write H = J + F, therefore F solves

2 1 2
—AGF + “Z e‘7ef——2 s— = 0 in B(0,3),
rtlog? r r*log”r
F = 0 ondB(0,3),

because nI' = T" in B(0,%). Since F € L*(B(0, })) we can expand it as

o .
= Z a(r)e?.
k=0

Observe that

fx) _ k112 cos2(0) + kar? sin?(0) + k3r? sinf cos f +O(r) = a(8) + O(r),

7‘2 T2
for r # 0. Besides, 1 < a(f) < B2. Thus
flo) 2 577 1 2 1 2 .
r 10?7“6 © - 2 log?r - 72 log? r [(a(8) +O(r))e? ™ —1].

Moreover, since H € L>(B(0,3)) we have e/ ™ € L*(B(0, 3)), so

1 2 s i
r2log? r [(@(6) +O(r)e”™ 7 —1] =3 mu(r)e™”,
ogr 2
where .
1
mi(r)| < 5 —5—, Yk >0,

r2 log® r
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for a constant C' independent of k. Now, we study the behavior of the
coefficients ay(r). For this purpose let us remember that

u  1ou 1 0%
A Hh=—+-——+ =
u(r,6) or? * r or + r2 962
For k > 1, we see that ay(r) satisfies the ordinary differential equation
82ak 1 6ak k2 Y

52 (1) =5 (1) + Gak(r) =m(r), 0<r<g, (2.12)

under the conditions

%<%>:O,(%W)GLW<PLgD. (2.13)

We recall that the L*°-condition comes from the fact that F € L>(B(0, 3)).
Let us make the change of variables r = e!, Ax(t) = ax(e'), My (t) = my(el),
so the previous problem transform into

2 (t) + k“Ag(t) = Mi(t), —oo<t<log > (2.14)
under the conditions
A <log %) =0, ApelL™ ((—oo,log %D . (2.15)

Besides, |Mj(t)] < Ct=2 for all k > 1. All the solutions of the homogeneous
equation are given by linear combinations of e** and e™** and a particular
solution Azart of the non-homogeneous equation (2.14) is given by the
variation of parameter formula. We conclude that this problem has a
solution of the form

Cl@kt+02€_kt+Azart.

By the L°°-condition we conclude that Cy = 0 and by the boundary
condition in (2.15) we deduce C7 = 0. This implies that the null function
is the only solution of the homogeneous equation under condition (2.15).
Hence, this problem has a unique solution Ag(t). We claim that for a
constant C' independent of £ we have
1

k2t2’
The proof of this fact is based on maximum principle: Observe that since
k? > 0, the operator

|Ax(t)| < C (2.16)

4 k2
dt? +
satisfies the weak maximum principle on bounded subsets of (—oo,log ].
C1 —kt

Let us prove that ¢ = ;55 + pe™™" is a non-negative supersolution for this
problem. Observe first that since Ay(t) is bounded, there exist 7, such that

Ap(t) < o(t), forallte (—oo,7,).
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Besides,

d? 9 1 1 07
- — - — > -
( t2+k )gf) 601k2t4+01t2 Mk(t), Vi € (7p,log2>,

where the last inequality is valid if we choose C large enough. Observe also
that ¢(t) > Ag(t) for t = 7,,log 3. Hence, by weak maximum principle we
conclude that for all p > 0

Ap(t) < Lo +pe vt e (—oo,log 1} .

~ k22 2
Taking the limit p — 0 in the last expression, we conclude that Ag(t) <
C ﬁ Analogously, we now prove that ¢ = — kng — pe~** is a non-positive

subsolution for this problem. Since Ay(t) is bounded, there exist 7, such
that

p(t) < Ap(t), VYt e (—oo, 7).
Besides,
d? 2 1 1 ~
(_dt2 +k ) p = 602@ - CQW < Mi(t), Vte (Tp,log§> 7
where the last inequality is valid if we choose Cy large enough. Observe also

that o(t) < Ag(t) for t = 7,,log 3. Hence, by weak maximum principle we
conclude that for all p > 0

—% —pe M < ALt), Vte (—oo,log %} .
Taking the limit p — 0 in the last expression, we conclude (2.16). Finally,
coming back to the variable r we conclude that there exist a unique solution
ar(r) of problem (2.12)-(2.13), and for a constant C' independent of k we

have

1 Y
<C—— 0<r<2
s (r)] < k2log?r "S5

Now we deal with ag(r). Observe that
1
eF = () (1 +0 <2>> , el =14 0(r),
log® r

and

oo
a(f) = ap + Zakeike, with ag > 0,
k=1

so we conclude that ag(r) satisfies the ordinary differential equation

0%ap(r) _ 10ag(r) N aneboeao(r) -1 1
or? r or 72 log2 r N ’

r2logtr

under the following conditions

w(3) = wer (o)
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We make the change of variables r = e!, ag(t) = ag(e!), so the previous
problem transform into

d?dy apeboedo — 1 1
— 2 =0 — 2.17
dt? + 12 <t4> ’ ( )
under the conditions
&0 <log %) —0, agelL™ ((—oo, log g]) . (2.18)

The L°°-condition implies that there exist a sequence t,, — —oo such that
aop(t,) — L, asn — oo,
where L = —log(age?). If not there exist M < 0 such that
lagee®™ — 1| > e >0, Vt< M,
which means that
Pay

>C0S. Vi< M.
t2

Thus
|ap| > Celog|t|, Vt< M,
so ag is unbounded, a contradiction.

We claim that the problem (2.17,2.18) has at most one solution. In fact,
let us suppose by contradiction that u; and us are two diferent solutions.
We define u = w1 — ug, which satisfies the problem

d2
_ﬁg + 209 c(t)u = 0,

under the conditions,
u <log %) =0, welL™ ((—oo,log %D )

o) = { 0 if uy (t) = ua(t),

and where

eul (t)—ua(t) .
t% ull(t;—uj(;) if U1 (t) 7& Uz (t)

Observe that ¢(t) > 0, so we can apply the strong maximum principle in
bounded domains for this problem. Moreover, from the L°° condition we
deduce that there exists a sequence ¢, such that u(¢,) — 0 as n — oo (the
proof of this fact is the same that we gave before). From this two facts, we
deduce easily that u; = us.

Let us make the change of variables —t = e°, Ag(s) = ao(—e®), so the
previous problem transform into

2
—ddio + % + 2(apee — 1) = O(e™%), (2.19)

under the conditions

Ao (log (—log %)) —0, Age L™ ([bg <—1og %) oo)) .
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We look for a solution of this problem of the form Agy(s) = L + ¢(s), so ¢
solves the differential equation

¢ do 2

—— 4+ —+4+20=N O(e

T2 T, T20=N(9)+0(e™),

where
N(¢) = —2(c* — p—1).

Observe that ¢, = €2°, ¢_ = e~% are two linear independent solutions of
the homogeneous equation.

From the previous analysis, we deduce that there exists a sequence
sn — 00 such that ¢(sp) = 6, — 0, as n — oo. We make the change
of variables ¢, (7,) = ¢(s) — dpd—(7), where 7, = s — s, s0 ¢, € L solves
the problem

{ —fn 4 &+ 200 = N(gn+6e ™) +e 2m0(e™?™) 7, € (0,00),
¢n(0) 0.

(2.20)
Let us study the linear problem

—¢"+¢+20 = w in (0,00),
e(0) = 0, € L>(0,00)

for w € C(]0,00)) given. This problem has an explicit and unique solution
¢ = T]g], in fact

t A_s t >\+8
(& wls (& wis
p(t) = Cle’\+t—|—Cze’\-t+e’\+t/ 3625( )dS—e)‘—t/ 3625( ) s
0 0

and we deduce that C7 = 0 and Cy = 0 due to the L condition and the
value at 0 of ¢, respectively. problem (2.20) can be written as

bn = T[N(dp + e ™) + e 2m0(e™2™)] := Aldy]. (2.21)
We consider the set
Be={p € C([0,0)) : [[¢[lc <€}

It is easy to see that if s,, is large enough and §,, small enough we have
|A[g] — Ald2]lle < Celly, — dall,

1A[@n]]| < Ce,

and where C' is independent of n. It follows that for all sufficiently small
e we get that A is a contraction mapping of B, (provided n large enough),
and therefore a unique fixed point of A exists in this region. We deduce
that there exists a unique solution Ag of problem (2.19), and it has the form
Ao(s) = L + ¢(s), where L is a fixed constant, and ¢(s) — 0 as s — 0.
This concludes the proof of Lemma 2.1. O
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3. CONSTRUCTION OF A FIRST APPROXIMATION

In this section we will build a suitable approximation for a solution of
problem (1.8) which is large exactly near the point p. The “basic cells” for
the construction of an approximate solution of problem (1.8) are the radially
symmetric solutions of the problem

{Aw—}—)\26w = 0 inR?

w(zr) — 0 as|z|— oco. (3.1)

which are given by the one-parameter family of functions

(1) = log 3
ws(|z]) =log —s——,
' ® (25 1 [af?)?
where § is any positive number. We define € = AJ. In order to construct
the approximate solution we consider the equation
82

AF - et =0, (3.2)
in the variable r = |z|/e and we look for a radial solution F' = F(r), away
from r = 0. For this purpose we solve problem (3.2) under the following
initial conditions

F(1/5)=0, F'(1/6)=0.
We make the change of variables r = ¢!, V(t) = F(r), so that equation (3.2)
transforms into
V" — 5%V = 0.

We consider the transformation V(s) = V(ds), so V solves problem
V' —eV =0, V(5|logd]) =0, V'(6|logd|)= 0.

This problem has a unique regular solution, which blows-up at some finite
radius v > 0. Coming back to the variable r = |z|/e, we conclude that the
solution F(r) is defined for all 1/ < r < Cel/® = C'/\, for some constants
C,C. Here we have used the definition of 4, see (3.3). Besides, we extend by
0 the function F for r € [0,1/4), which means F(r) = 0, for all r € [0,1/0)
and we denote by F(|z|) = F(|z|/¢). A first local approximation of the
solution, in local conformal coordinates around p, is given by the radial
function u.(x) = ws(|z|) + F(|z]).

In order to build a global approximation, let us consider 1 a smooth
radial cutoff function such that n(r) = 1 if r < Ci6 and n(r) = 0 if
r > (50, for constants 0 < C7 < Cs. We consider as initial approximation
Us = nus + (1 — n)G, where G is the Green function that we built in the
previous section. In order to have a good approximation around p we have
to adjust the parameter . The good choice of this number is

1

log 852 = —21o <
g g \/5

log i) + H(p), (3.3)
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where H is defined in Section 2. With this choice of the parameter J, the
function u. is approaching the Green function G around p.
A useful observation is that u satisfies problem (1.8) if and only if

v(y) = u(ey) +4log A + 21log o
satisfies
Agv— A2 f(ey)e’ +e’ +2a =0, ye M, (3.4)
where M, = e ' M.
We denote in what follows p’ = e~!p and

U.(y) = U.(cy) + 4log A + 21og 5,
for y € M.. This means precisely in local conformal coordinates around p
that

U-(y) =n(ely|) <10g (1+Ty|2)2 + F(EWI))

+ (1 —n(ely|) (G(ey) + 4log A + 21ogd) .

Let us consider a vector k& € R%.  We recall that ws(|z — k|) is also a
solution of problem (3.1). To solve problem (3.4), we need to modify
the first approximation of the solution, in order to have a new parameter
related to translations. More precisely, we consider for |k| < 1 the new first
approximation of the solution (in the expanded variable)

Vo) =ntely) (108 s + Flelu) )
+ (1 —nlely])) (G(ey) + 4log A + 2log ) .

We will denote by v. the first approximation of the solution in the original
variable, which means

2 ~
ve(e) = n(el) (108 (g oy + FllaD) ) + (1 = n(lel))G o)

Hereafter we look for a solution of problem (3.4) of the form v(y) =
Vz(y) + #(y), where ¢ represent a lower order correction. In terms of ¢,
problem (3.4) now reads

L(¢) = N(¢) + E, in M., (3.5)
where
L(¢) :=0g¢ — A2 f(ey)e”=¢ + € ¢,

N(¢) :=A"*f(ey)e'*(e? =1 —¢) — e (e? =1 —¢),
E = — (AVe — A2 f(ey)e'® + eV + £%a).
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4. THE LINEARIZED OPERATOR AROUND THE FIRST APPROXIMATION

In this section we will develop a solvability theory for the second-order
linear operator L defined in (3.5) under suitable orthogonality conditions.
Using local conformal coordinates around p’, then formally the operator L
approaches, as ¢, |k| — 0, the operator in R?

8
L) = Ao+ T
namely, equation Aw + € = 0 linearized around the radial solution
w(z) = log (H\%‘ An important fact to develop a satisfactory solvability
theory for the operator L is the non-degeneracy of w modulo the natural
invariance of the equation under dilations and translations. Thus we set

20(2) = E?S[w(sz) + 21log s]|s=1, (4.1)

2i(z) = ;Qw(z +Q)l¢=0, i=1,2. (4.2)

It turns out that the only bounded solutions of £(¢) = 0 in R? are precisely
the linear combinations of the z;, i = 0,1,2, see [2] for a proof. We define
for i =0,1,2,
Zi(y) = zi(y — k).

Additionally, let us consider Ry a large but fixed number Ry > 0 and x a
radial and smooth cut-off function such that x = 1 in B(k, Ryp) and x =0
in B(k, Ry + 1)°.

Given h of class C%#(M.), we consider the linear problem of finding a
function ¢ such that for certain scalars ¢;, i = 1, 2, one has

L(®) = h+X i exZ in M,
XZi¢p = 0 for i =1, 2.
M.
We will establish a priori estimates for this problem. To this end we define,
given a fixed number 0 < ¢ < 1, the norm

[fls = W[Allp = Sj\l}p(maX{ez, lyl 777 7 Al (4.4)

(4.3)

Here the expression max{e? |y|727°} is regarded in local conformal
coordinates around p’ = £ !p. Since local coordinates are defined up to
distance ~ % that expression makes sense globally in M.

Our purpose in this section is to prove the following result.

Proposition 4.1. There exist positive numbers €y, C' such that for any
h € COP(M.), with ||h|« < co and for all k such that |k| < C\/§, there
is a unique solution ¢ = T(h) € C*P(M.) of problem (4.8) for all € < &,
which defines a linear operator of h. Besides,

Tl < Clog (2) 11 (4.5
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Observe that the orthogonality conditions in problem (4.3) are only taken
respect to the elements of the approximate kernel due to translations.

The next Lemma will be used for the proof of Proposition 4.1. We obtain
an a priori estimate for the problem

L(¢) = h in M.,

xZip = 0 fori=1,2.
M.

(4.6)

We have the following estimate.

Lemma 4.1. There exist positive constants €9, C such that for any ¢
solution of problem (4.6) with h € C%P(M.), ||h|+ < oo and any k,
k| < CA/§

1
ol < Clog () 141

for all e < gp.

Proof. We carry out the proof by a contradiction argument. If the above
fact were false, there would exist sequences (€n)nenN, (Kn)neny such that
en — 0, |ky| — 0 and functions ¢y, hy, with ||¢p|/cc = 1,

log(e;, )| 7nl« — 0,
such that

{ L((bn) = hn in Many (47)

fMa XZipp = 0 fori=1,2.
A key step in the proof is the fact that the operator L satisfies a weak

maximum principle in regions, in local conformal coordinates around p, of
the form A. = B(p',e 1v/2) \ B(p', R), with R a large but fixed number.

Consider the function zo(r) = %, radial solution in R? of
A S =
20 + (1 +T2)2ZO =0.

We define a comparison function

Z(y) = zo(aly —p']), y € M.
Let us observe that
8a*(a’ly —p'|* = 1)
(I+a?ly—p'?)?
So, for 100a~2 < |y — p'| < e~1v/2, we have

( ) CL2 CL_2
—AZ(y) > 2 > .
1+a?ly—p'2)? ~ ly—p|*

On the other hand, in the same region,

—AZ(y) =

1

W < O
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Hence if a is taken small and fixed, and R > 0 is chosen sufficiently large
depending on this a, then

AZ +¢e%Z <0, in A..
Since Z > 0 in A., we have
L(Z) <0, in A..
We conclude that L satisfies weak maximum principle in A, namely if
L(¢) <0in A. and ¢ > 0 on 0A., then ¢ > 0 in A..

We now give the proof of the Lemma in several steps.

STEP 1. We claim that

sup [Pn(y)] = o(1),
YyEMe,\B(p/en,p/en)

where p is a fixed number. In fact, coming back to the original variable by
the transformation

bn(z) = bn <x> . ze M.

€n

We can see that ¢, satisfies the equation

n o N 1
By = fendn + X = i (2, (48)
where

ve, () = Ve, (:) — 4log Ay — 2log$,

is the approximation of the solution in the original variable. Taking n — oo,
we can see that ¢,, converges uniformly over compacts of M\ {p} to a function
¢ € HY(M) N L>®(M) solution of the problem

Ny — fe!d=0, in M\ {p} (4.9)

where J is the limit of v.,. We claim that gZ; = 0, in fact, we consider the
unique solution ® of the problem

Ay® — min{fe’ 1}® = —§,, in M.

Using local conformal coordinates around p we expand
1
®(z) = —5-log(|a]) + H(z)

for H bounded. Since ¢ € L>®(M), we conclude that for all sufficiently small
e and 7 we have

b(z)| < e@(x), x € DB(0,7).
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Multiplying (4.9) by ¢ = (¢ — e®),, and integrating by parts over M, =
M \ U, where U, is the neighborhood around p under the local conformal
coordinates that we used, we have

/ |Vg<p\2+/ feJch—i-e/ el p® = 0.
M, M, M,

Since ® > 0, we have
/ Vgpl? + / fel* <.
M, M,

Hence ¢ = (¢ — e®)y = 0 in M,, so ¢ < e in M,. Multiplying by
© = (¢ + eP)_ and integrating by parts, we have (¢ + e®)_ = 0, thus

|p(z)] < e®(x), x € M,.

Taking € — 0 and 7 — 0, we conclude that gZA) =0.

STEP 2. Let us consider the transformation

On(y) = Py + D)

Thus qgn satisfies the equation
Agn — M2 fleny + pn)e o WP G 4 eVonWHP0) = b (y 4 ),

in M., — {p),}. Taking the limit n — oo in the last equation (and also
in problem (4.7)), we see that ¢, converges uniformly over compacts of
M., — {p),} to a bounded solution ¢ of the problem

L(¢) =0 inR? /Xzig?s:o, i=1,2.
R2

Hence ¢(z) = CoZo(x).

In what follows we assume without loss of generality that Cy > 0. If
Co < 0, we work with —¢,, instead of ¢, and the following analysis is also
valid.

STEP 3. In this step we will construct a non-negative supersolution
in the region, in local conformal coordinates around pl,, B, = B(kn,p) \
B(kn,e,1v/2), p > 0, where the weak maximum principle is valid. We work
first in the case Cy > 0. Let us consider the problem

— Aty — GVET,Z)n =1 in By,
wn(y) = (o on 6B(knap)7 (410)
Un(y) = o(1) on dB(kn,e,'7/2).

We define r = |y — ky|. A direct computation shows that
Yn(y) = CoZo(r) + CY (r) + W(r),
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where
Y (r) =2 /pr sZé(s)ds’ W(r)=—2Zy(r) /pT sY(s)ds+Y(r) /p?" sZp(s)ds,
and

o =2 - CoZo(en'/2) = W(en'v/2).

Y(en'y/2)
We choose p > R, where R is the fixed minimal radio for which the weak
maximum principle is valid in the region B,,. Observe that

L(thn) = =1 = A2 f(ey)e"tbn < hy = L(gn).
Moreover, from steps 1 and 2, we deduce that
Yn = ¢n, on dBpy, (4.11)
which means that 1, is a supersolution for the problem
L(¢n) = hyp, in By,.

Since p > R, we can apply the weak maximum principle and we deduce that
v, > ¢, in B,. Observe that

> el (4.12)

— n

‘ dn(p) '
dr

In the other hand

dZo r

—=—C——= 4.13

dr (r2 —1)%’ (4.13)
where C' > 0 is a constant independent of n. Since ¢, converges over
compacts of the expanded variable to the function CyZ,, we deduce from
(4.11), (4.12) and (4.13) that the partial derivative of ¢, respect to r is
discontinuous at |y — k,| = p, for large values of n, which is a contradiction.

In the case Cy = 0, ¢, converges to 0 over compacts of the expanded

variable. Let us consider the problem

—Avy, — evgwn =1 in By,
wn(y) = 1/2 on 8B(kna P),
%(y) = 0(1) on aB(knaSEI’Y/Q)'

It is easy to see that 1, < 1/2 in B,,. Using the previous maximum principle
argument we deduce that ¢, < v, < 1/2 Applying the same argument for
the problem that —¢,, satisfies, we conclude —¢,, < 1/2. Thus,

[fnlloo < 1/2,

which is a contradiction with the fact ||¢p||lcoc = 1. This finishes the proof of
the a priori estimate. O

We are now ready to prove the main result of this section.
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Proof of Proposition 4.1. We begin by establishing the validity of the a
priori estimate (4.5). The previous lemma yields

2
HhH*JrZ\Cil] , (4.14)
i=1

hence it suffices to estimate the values of the constants |¢;|, i = 1,2. We

use local conformal coordinates around p, and we define again r = |y| and
we consider a smooth cut-off function n(r) such that n(r) = 1 for r < %,

n(r) =0 for r > %, In'(r)| < Cye, n"(r)| < Ce. We test the first equation
of problem (4.3) against nZ;, i = 1,2 to find

ol < g (1)

(L(®),nZi) = (h,nZi) + ¢ /M X|Zi|?. (4.15)

Observe that
and
L(nZ;) = ZiAn + 2V -V Z; + (A Z; + €Y= Z;) — p\ "2 f (ey)e"= Z;.
We have
N(AZ;+ e Z;) = 0((1 +1)73).
Observe that
)\_Zf(ey)evf(y) = )\252]’(3:)6”5(1), where y = §’$ €M,

thus

A2 f(ey)eV=Z; = O(?).
Since An = O(e), Vi = O(y/2), and besides Z; = O(r7!), VZ; = O(r—2),
we find

ZiAn +2Vn-VZ; = O(e\/e).

From the previous estimates we conclude that

(¢, L(nZ:))| < CVe|dlloo-
Combining this estimate with (4.14) and (4.15) we obtain

ol <c|Inl. + vElos |
which implies
leil < C||hll« i=1,2.
It follows from (4.14) that
1
6l < Cog (1) ..

3
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and the a priori estimate (4.5) has been thus proven. It only remains to
prove the solvability assertion. For this purpose let us consider the space

H:{qSeHl(Mg):/ XZZ-¢:0,@':1,2.}

€

endowed with the inner product,
W)= [ VooV [ A Heneou.
M. M.

Problem (4.3) expressed in weak form is equivalent to that of finding ¢ € H

such that
(6, 9) = /Mg

With the aid of Riesz’s representation theorem, this equation gets
rewritten in H in the operator form ¢ = K(¢) + h, for certain h € H,
where K is a compact operator in H. Fredholm’s alternative guarantees
unique solvability of this problem for any h provided that the homogeneous
equation ¢ = K(¢) has only zero as solution in H. This last equation is
equivalent to problem (4.3) with h = 0. Thus, existence of a unique solution
follows from the a priori estimate (4.5). The proof is complete. O

2
e"¢+h+ Z cixZi
i=1

v, forall ¢y € H.

5. THE NONLINEAR PROBLEM

We recall that our goal is to solve problem (3.5). Rather than doing so
directly, we shall solve first the intermediate problem

L(d)) = N(¢) +E+ 2?21 cixZ; in M.,

xZi¢ = 0 fori=1,2,
M.

(5.1)

using the theory developed in the previous section. We assume that the
conditions in Proposition (4.1) hold. We have the following result

Lemma 5.1. Under the assumptions of Proposition (4.1) there exist positive
number C, gy such that problem (5.1) has a unique solution ¢ which satisfies

1
HngOO S CE]Og ga
for all e < gg.

Proof. In terms of the operator T defined in Proposition (4.1), problem
(5.1) becomes

¢ =T(N(¢) + E) =: A(¢). (5.2)

For a given number 9 > 0, let us consider the space

Hy = {qb € C(M,) : [|4]leo < ﬁglogi}.
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From Proposition (4.1), we get

[A(@)]lec < C'log <1> (N (D)l + [1E1]4)-

B
Let us first measure how well V. solves problem (3.4). Observe that
V=) = \§2eve(®) g = g,x e M, (5.3)

SO
le"=@], < Ce.

As a consequence of the construction of the first approximation, the choice
of the parameter §, the expansion of the Green function G around p, and
(5.3), a direct computation yields

1B < Ce.
Now we estimate
N(¢) = A" f(ey)e’*(e? =1 = ¢) = €"*(e? = 1= 9).
In one hand, from (5.3) we deduce
le¥*(e? =1 = @)ll. < Cell¢ll3
In the other hand
A2 f(ey)eVsW) = A252eve(@) ) = g,:c e M,

SO
A2 f(ey)e™(e” — 1= ¢)|lx < Ce ™72
We conclude,
IN(@)[l« < Ce™76]|%.

Observe that for ¢, ¢ € Hy,

3

IN(61) — N(62)]l. < 00" log (1) 161 — dalloo,

where C' is independent of 1. Hence, we have

|A(¢)]lsc < Celog (i) (1921 log (i) L1,

e

JA(61) — A(62)]0 < O log (1) 161 — dalle.

It follows that there exist €y, such that for all € < g9 the operator A is a
contraction mapping from Hy into itself, and therefore A has a unique fixed
point in Hy. This concludes the proof. O

With these ingredients we are now ready for the proof of our main result.
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6. PROOF OF THEOREM 1.1 FOR n =1

After problem (5.1) has been solved, we find a solution to problem (3.5),
and hence to the original problem, if & = k(e) is such that

ci(k) =0, i=1,2. (6.1)
Let us consider local conformal coordinates around p and define r = |y|.
We consider a smooth cut-off function 7n(r) such that n(r) = 1 for r < %,
n(r) =0 for r > %, I’ (r)] < Cy/e, n"(r)| < Ce. Testing the equation
2

L(¢) = N(¢)+ E+ Y cixZi,

i=1
against nZ;, i = 1,2, we find
@@z = [ N@) + Bzt [ 22 i=12

€ €

Therefore, we have the validity of (6.1) if and only if

(L(6).1Z:) — / IN(6) + ElnZi =0, i=1,2.

€

We recall that in the proof of Proposition (4.1) we obtained

(6, L(nZ:))] < CVE]|B]|se
thus '
(@ L(nZi))| < C=**log .

Observe that
IN ()]l < CE?||0]|%,

' /MS N(onZ;

Let us remember that
E=—AV. + X\ 2f(ey)e"s —e's — £%a.
Using (5.3), we have

SO
1
< Ce||¢|%, < Ce®log? =
&

/ eVenz; = 0(e*).

£

We also have,

/ S2anZ; = O(e).

£

Observe that .
Ang(y) = 52Ag“€(x)a Yy = g7x € M,

thus
/ AVinZ; = O(e?).
M.
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Also, by change of variables we have
/M fley)et nZ; = /M Fo+ ey + k)= n(ly + k) Zily + k + 1),

where M. = M. — k + p/. Using the fact that p is a local maximum of f of
value 0, we have

Fp+ely +k) =Xy + k), D*f(p)(y + k) + O(%),
where we used the fact that f € C3(M). Thus

)\_2/ f(sy)eVEUZl = Iz + IIZ,
M

where

I; =6 / ((y+ k), Hp(p)(y + k))e =0y + k) Z;(y + &k + p')

I = | O@)e "Wy + k) Zi(y + & + p).
M.
Observe that eVg(y“'ker/)n(]y + k) Zi(y+k+p)=0(1+]y)*), so

Finally, let us compute I;. First, observe that 0 € M,. Let us consider a
fixed number Ay, such that By = B(0, Ag/+/e) C M. Nsupp(n(-+ k)) =: B
and (- + k) = 1 in B;. We have the decomposition B = By U By, where

By = Q. Nsupp(n(- + k)) \ Bi. Also, observe that
Yi
1+ |yl

where Cj is a fixed constant independent of €. We have the following
computation

((y+k), D*f(p)(y+k)) = f11(p) (y1+k1)*+2f12(p) (Y1+k1) (Ya+k2)+ fa2 (p) (y2+k2),

92 92 2
where fi1(p) = 55(p), f2(p) = 5,4(p) and fra(p) = fr(p) = 5.4 (p)- We
recall that

Zl(ijk?ij/):CO 1=1,2,

/ H
Ve(y+k+p') _ 0 (1
e = + Cve+ 0(¢)), 6.2
1+ PP © 02
in the region Q. Nsupp(n(- + k)).
Let us define t;(y) = =Wtk (|y + k) Zi(y + k + p') and compute I;.
We have the following calculations for ¢ =1

/Bfn(P)(yl + k1)t (y) = ; )y + k)*t(y) + ; ()1 + k1)t (y)

2
Y1 Hy
=2k D C
1ulp) | T T e

+ O(e).
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In order to get the previous result, we used the fact that

/ Y1 dy / i dy
B L+l (T+1y?)? s T+l (L4192
and the expansion (6.2). We also have

_ y2 HO
/B2f12(p)(l/1+k1)(y2+k2)t1(y) = 2k2f12(p) /131 Coy +1!y\ 1+ 1yP)

5 +0(e),
where we used the fact that

/ Y192 1 :/ Y2yo 1 _0
g LH A+ 1w2)? S, 14+ yl A+ [y 7

and also the expansion (6.2). Finally, we have

/B For(0) (92 + F2)Pa(y) = O(e),

where we used

/ Y13 L
B L+l (T+1y?)?
and also the expansion (6.2). From the above computations we conclude

that
I = 20°Tky f11(p) + 20%Tka f12(p) + O(e),

2
I:/ Co > 0.
B LFlyl(L+]yl*)?

Similar computations yield
Iy = 20°Iky f12(p) + 26%1 ks foa (p) + O(e).
Summarizing, we have the system
82D%f(p)k = eb(k), (6.3)

where b is a continuous function of k of size O(1). Since p is a non-degenerate
critical point of f, we know that D?f(p) is invertible. A simple degree
theoretical argument, yields that system (6.3) has a solution k = O(A6~1).
We thus obtain c¢;(k) = ca(k) = 0, and we have found a solution of the
original problem. The proof for the case k = 1 is thus concluded. O

where

7. PROOF OF THEOREM 1.1 FOR GENERAL N
In this section we will detail the main changes in the proof of our main

result, in the case of multiple bubbling.

Let pi,...,pn be points such that f(p;) = 0 and D?f(p;) is positive
definite for each j. We consider the singular problem

k
AngfeGJrSTrZ(sijroz:O, in M, (7.1)
j=1
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where §,, designates the Dirac mass at the point p. A first remark we make is
that the proof of Lemma 2.1 applies with no changes (except some additional
notation) to find the result of Lemma 1.1. Indeed, the core of the proof is
the local asymptotic analysis around each point p;.

We define the first approximation in the original variable as

n n
U5:anu§+ 1—an G,
j=1 j=1

where 7; is defined around p; as in Section 3 and, in local conformal
coordinates around pj, ul(z) = ws,(lx — kj|) + Fj(|z|), for parameters
k; € R2. We make the following choice of the parameters 0

log 857 = —2log <\}§ log i) + H(p:).-

We also define the first approximation in the expanded variable around each
pj by

Ve, (y) = Us(gjy) +4log A+ 2logd;, y € M.,
where £; = \j; and M., = 5;1M.

We look for a solution of problem (1.8) of the form u(y) = U.(z) + ¢(z),
where ¢ represent a lower order correction. By simplicity, we denote also by
¢ the small correction in the expanded variable around each p;. In terms of
¢, the expanded problem around p;

Agv — N2 f(ejy)e’ + e’ + E?a =0, ye M,
reads
Lj(¢) = Nj(¢) + Ej, in M,
where
Lj(¢) =0y — A2 f(ejy)e o+ €4,
Nj(@) =A2f(egy)e’™ (e =1 - ¢) — e (e? 1 9),
Bji=— (DgVe, = A2 f(ey)e™ + €' + &%),
Next we consider the linearized problem around our first approximation

U.. Given h of class C%# (M), which by simplicity we still denote by h in the
expanded variable around each p;, we consider the linear problem of finding

a function ¢ such that for certain scalars (37 1=1,2; 7=1,...,n, one has
Lj(¢) = h+ ZZ 1 EJ 1 sz ij 1n MeJ;
XjZij¢ = 0 for all ¢, j. (7.2)

€J

Here the definitions of Z;; and x; are the same as before for Z; and x, with
the dependence of the point p; emphasized.
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To solve this problem we consider now the norm
n
Bl = 1l - (7.3)
j=1

where ||h|. ,; is defined accordingly with (4.4). With exactly the same proof
as in the case n = 1, we find the unique bounded solvability of problem (7.2)
for all small ¢ = maxe; by ¢ = T'(h), so that

Tl < Clog (2] 1. (7.4

Then we argue as in the proof of Lemma 5.1 to obtain existence and
uniqueness of a small solution ¢ of the projected nonlinear problem

Lj(#) Nj(¢) + Bj+ X0, Sy ddxZiy in M,
XjZij¢ = 0 for all 4, j.

€5

with )
e < Celog

After this, we proceed as in Section 6 to choose the parameters k; in such
a way that ¢/ = 0 for all 4, j. Summarizing, we have the system

D?f(pj)k; = €67 2bj(k1, ... k), (7.5)
which can be solved by the same degree-theoretical argument employed
before. The proof is concluded. ([
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